prometheus/storage/remote/codec.go
Bryan Boreham abd9909595 Update package storage/remote for new labels.Labels type
`QueueManager.externalLabels` becomes a slice rather than a `Labels` so
we can index into it when doing the merge operation.

Note we avoid calling `Labels.Len()` in `labelProtosToLabels()`.
It isn't necessary - `append()` will enlarge the buffer and we're
expecting to re-use it many times.

Also, we now validate protobuf input before converting to Labels.
This way we can detect errors first, and we don't place unnecessary
requirements on the Labels structure.

Re-do seriesFilter using labels.Builder (albeit N^2).

Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
2022-12-19 15:22:09 +00:00

636 lines
17 KiB
Go

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package remote
import (
"errors"
"fmt"
"io"
"net/http"
"sort"
"strings"
"sync"
"github.com/gogo/protobuf/proto"
"github.com/golang/snappy"
"github.com/prometheus/common/model"
"github.com/prometheus/prometheus/model/exemplar"
"github.com/prometheus/prometheus/model/histogram"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/model/textparse"
"github.com/prometheus/prometheus/prompb"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/tsdb/chunkenc"
"github.com/prometheus/prometheus/tsdb/chunks"
)
// decodeReadLimit is the maximum size of a read request body in bytes.
const decodeReadLimit = 32 * 1024 * 1024
type HTTPError struct {
msg string
status int
}
func (e HTTPError) Error() string {
return e.msg
}
func (e HTTPError) Status() int {
return e.status
}
// DecodeReadRequest reads a remote.Request from a http.Request.
func DecodeReadRequest(r *http.Request) (*prompb.ReadRequest, error) {
compressed, err := io.ReadAll(io.LimitReader(r.Body, decodeReadLimit))
if err != nil {
return nil, err
}
reqBuf, err := snappy.Decode(nil, compressed)
if err != nil {
return nil, err
}
var req prompb.ReadRequest
if err := proto.Unmarshal(reqBuf, &req); err != nil {
return nil, err
}
return &req, nil
}
// EncodeReadResponse writes a remote.Response to a http.ResponseWriter.
func EncodeReadResponse(resp *prompb.ReadResponse, w http.ResponseWriter) error {
data, err := proto.Marshal(resp)
if err != nil {
return err
}
compressed := snappy.Encode(nil, data)
_, err = w.Write(compressed)
return err
}
// ToQuery builds a Query proto.
func ToQuery(from, to int64, matchers []*labels.Matcher, hints *storage.SelectHints) (*prompb.Query, error) {
ms, err := toLabelMatchers(matchers)
if err != nil {
return nil, err
}
var rp *prompb.ReadHints
if hints != nil {
rp = &prompb.ReadHints{
StartMs: hints.Start,
EndMs: hints.End,
StepMs: hints.Step,
Func: hints.Func,
Grouping: hints.Grouping,
By: hints.By,
RangeMs: hints.Range,
}
}
return &prompb.Query{
StartTimestampMs: from,
EndTimestampMs: to,
Matchers: ms,
Hints: rp,
}, nil
}
// ToQueryResult builds a QueryResult proto.
func ToQueryResult(ss storage.SeriesSet, sampleLimit int) (*prompb.QueryResult, storage.Warnings, error) {
numSamples := 0
resp := &prompb.QueryResult{}
var iter chunkenc.Iterator
for ss.Next() {
series := ss.At()
iter = series.Iterator(iter)
samples := []prompb.Sample{}
for iter.Next() == chunkenc.ValFloat {
// TODO(beorn7): Add Histogram support.
numSamples++
if sampleLimit > 0 && numSamples > sampleLimit {
return nil, ss.Warnings(), HTTPError{
msg: fmt.Sprintf("exceeded sample limit (%d)", sampleLimit),
status: http.StatusBadRequest,
}
}
ts, val := iter.At()
samples = append(samples, prompb.Sample{
Timestamp: ts,
Value: val,
})
}
if err := iter.Err(); err != nil {
return nil, ss.Warnings(), err
}
resp.Timeseries = append(resp.Timeseries, &prompb.TimeSeries{
Labels: labelsToLabelsProto(series.Labels(), nil),
Samples: samples,
})
}
return resp, ss.Warnings(), ss.Err()
}
// FromQueryResult unpacks and sorts a QueryResult proto.
func FromQueryResult(sortSeries bool, res *prompb.QueryResult) storage.SeriesSet {
series := make([]storage.Series, 0, len(res.Timeseries))
for _, ts := range res.Timeseries {
if err := validateLabelsAndMetricName(ts.Labels); err != nil {
return errSeriesSet{err: err}
}
lbls := labelProtosToLabels(ts.Labels)
series = append(series, &concreteSeries{labels: lbls, samples: ts.Samples})
}
if sortSeries {
sort.Sort(byLabel(series))
}
return &concreteSeriesSet{
series: series,
}
}
// NegotiateResponseType returns first accepted response type that this server supports.
// On the empty accepted list we assume that the SAMPLES response type was requested. This is to maintain backward compatibility.
func NegotiateResponseType(accepted []prompb.ReadRequest_ResponseType) (prompb.ReadRequest_ResponseType, error) {
if len(accepted) == 0 {
accepted = []prompb.ReadRequest_ResponseType{prompb.ReadRequest_SAMPLES}
}
supported := map[prompb.ReadRequest_ResponseType]struct{}{
prompb.ReadRequest_SAMPLES: {},
prompb.ReadRequest_STREAMED_XOR_CHUNKS: {},
}
for _, resType := range accepted {
if _, ok := supported[resType]; ok {
return resType, nil
}
}
return 0, fmt.Errorf("server does not support any of the requested response types: %v; supported: %v", accepted, supported)
}
// StreamChunkedReadResponses iterates over series, builds chunks and streams those to the caller.
// It expects Series set with populated chunks.
func StreamChunkedReadResponses(
stream io.Writer,
queryIndex int64,
ss storage.ChunkSeriesSet,
sortedExternalLabels []prompb.Label,
maxBytesInFrame int,
marshalPool *sync.Pool,
) (storage.Warnings, error) {
var (
chks []prompb.Chunk
lbls []prompb.Label
iter chunks.Iterator
)
for ss.Next() {
series := ss.At()
iter = series.Iterator(iter)
lbls = MergeLabels(labelsToLabelsProto(series.Labels(), lbls), sortedExternalLabels)
frameBytesLeft := maxBytesInFrame
for _, lbl := range lbls {
frameBytesLeft -= lbl.Size()
}
isNext := iter.Next()
// Send at most one series per frame; series may be split over multiple frames according to maxBytesInFrame.
for isNext {
chk := iter.At()
if chk.Chunk == nil {
return ss.Warnings(), fmt.Errorf("StreamChunkedReadResponses: found not populated chunk returned by SeriesSet at ref: %v", chk.Ref)
}
// Cut the chunk.
chks = append(chks, prompb.Chunk{
MinTimeMs: chk.MinTime,
MaxTimeMs: chk.MaxTime,
Type: prompb.Chunk_Encoding(chk.Chunk.Encoding()),
Data: chk.Chunk.Bytes(),
})
frameBytesLeft -= chks[len(chks)-1].Size()
// We are fine with minor inaccuracy of max bytes per frame. The inaccuracy will be max of full chunk size.
isNext = iter.Next()
if frameBytesLeft > 0 && isNext {
continue
}
resp := &prompb.ChunkedReadResponse{
ChunkedSeries: []*prompb.ChunkedSeries{
{Labels: lbls, Chunks: chks},
},
QueryIndex: queryIndex,
}
b, err := resp.PooledMarshal(marshalPool)
if err != nil {
return ss.Warnings(), fmt.Errorf("marshal ChunkedReadResponse: %w", err)
}
if _, err := stream.Write(b); err != nil {
return ss.Warnings(), fmt.Errorf("write to stream: %w", err)
}
// We immediately flush the Write() so it is safe to return to the pool.
marshalPool.Put(&b)
chks = chks[:0]
}
if err := iter.Err(); err != nil {
return ss.Warnings(), err
}
}
return ss.Warnings(), ss.Err()
}
// MergeLabels merges two sets of sorted proto labels, preferring those in
// primary to those in secondary when there is an overlap.
func MergeLabels(primary, secondary []prompb.Label) []prompb.Label {
result := make([]prompb.Label, 0, len(primary)+len(secondary))
i, j := 0, 0
for i < len(primary) && j < len(secondary) {
if primary[i].Name < secondary[j].Name {
result = append(result, primary[i])
i++
} else if primary[i].Name > secondary[j].Name {
result = append(result, secondary[j])
j++
} else {
result = append(result, primary[i])
i++
j++
}
}
for ; i < len(primary); i++ {
result = append(result, primary[i])
}
for ; j < len(secondary); j++ {
result = append(result, secondary[j])
}
return result
}
type byLabel []storage.Series
func (a byLabel) Len() int { return len(a) }
func (a byLabel) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a byLabel) Less(i, j int) bool { return labels.Compare(a[i].Labels(), a[j].Labels()) < 0 }
// errSeriesSet implements storage.SeriesSet, just returning an error.
type errSeriesSet struct {
err error
}
func (errSeriesSet) Next() bool {
return false
}
func (errSeriesSet) At() storage.Series {
return nil
}
func (e errSeriesSet) Err() error {
return e.err
}
func (e errSeriesSet) Warnings() storage.Warnings { return nil }
// concreteSeriesSet implements storage.SeriesSet.
type concreteSeriesSet struct {
cur int
series []storage.Series
}
func (c *concreteSeriesSet) Next() bool {
c.cur++
return c.cur-1 < len(c.series)
}
func (c *concreteSeriesSet) At() storage.Series {
return c.series[c.cur-1]
}
func (c *concreteSeriesSet) Err() error {
return nil
}
func (c *concreteSeriesSet) Warnings() storage.Warnings { return nil }
// concreteSeries implements storage.Series.
type concreteSeries struct {
labels labels.Labels
samples []prompb.Sample
}
func (c *concreteSeries) Labels() labels.Labels {
return c.labels.Copy()
}
func (c *concreteSeries) Iterator(it chunkenc.Iterator) chunkenc.Iterator {
if csi, ok := it.(*concreteSeriesIterator); ok {
csi.reset(c)
return csi
}
return newConcreteSeriersIterator(c)
}
// concreteSeriesIterator implements storage.SeriesIterator.
type concreteSeriesIterator struct {
cur int
series *concreteSeries
}
func newConcreteSeriersIterator(series *concreteSeries) chunkenc.Iterator {
return &concreteSeriesIterator{
cur: -1,
series: series,
}
}
func (c *concreteSeriesIterator) reset(series *concreteSeries) {
c.cur = -1
c.series = series
}
// Seek implements storage.SeriesIterator.
func (c *concreteSeriesIterator) Seek(t int64) chunkenc.ValueType {
if c.cur == -1 {
c.cur = 0
}
if c.cur >= len(c.series.samples) {
return chunkenc.ValNone
}
// No-op check.
if s := c.series.samples[c.cur]; s.Timestamp >= t {
return chunkenc.ValFloat
}
// Do binary search between current position and end.
c.cur += sort.Search(len(c.series.samples)-c.cur, func(n int) bool {
return c.series.samples[n+c.cur].Timestamp >= t
})
if c.cur < len(c.series.samples) {
return chunkenc.ValFloat
}
return chunkenc.ValNone
// TODO(beorn7): Add histogram support.
}
// At implements chunkenc.Iterator.
func (c *concreteSeriesIterator) At() (t int64, v float64) {
s := c.series.samples[c.cur]
return s.Timestamp, s.Value
}
// AtHistogram always returns (0, nil) because there is no support for histogram
// values yet.
// TODO(beorn7): Fix that for histogram support in remote storage.
func (c *concreteSeriesIterator) AtHistogram() (int64, *histogram.Histogram) {
return 0, nil
}
// AtFloatHistogram always returns (0, nil) because there is no support for histogram
// values yet.
// TODO(beorn7): Fix that for histogram support in remote storage.
func (c *concreteSeriesIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) {
return 0, nil
}
// AtT implements chunkenc.Iterator.
func (c *concreteSeriesIterator) AtT() int64 {
s := c.series.samples[c.cur]
return s.Timestamp
}
// Next implements chunkenc.Iterator.
func (c *concreteSeriesIterator) Next() chunkenc.ValueType {
c.cur++
if c.cur < len(c.series.samples) {
return chunkenc.ValFloat
}
return chunkenc.ValNone
// TODO(beorn7): Add histogram support.
}
// Err implements chunkenc.Iterator.
func (c *concreteSeriesIterator) Err() error {
return nil
}
// validateLabelsAndMetricName validates the label names/values and metric names returned from remote read,
// also making sure that there are no labels with duplicate names
func validateLabelsAndMetricName(ls []prompb.Label) error {
for i, l := range ls {
if l.Name == labels.MetricName && !model.IsValidMetricName(model.LabelValue(l.Value)) {
return fmt.Errorf("invalid metric name: %v", l.Value)
}
if !model.LabelName(l.Name).IsValid() {
return fmt.Errorf("invalid label name: %v", l.Name)
}
if !model.LabelValue(l.Value).IsValid() {
return fmt.Errorf("invalid label value: %v", l.Value)
}
if i > 0 && l.Name == ls[i-1].Name {
return fmt.Errorf("duplicate label with name: %v", l.Name)
}
}
return nil
}
func toLabelMatchers(matchers []*labels.Matcher) ([]*prompb.LabelMatcher, error) {
pbMatchers := make([]*prompb.LabelMatcher, 0, len(matchers))
for _, m := range matchers {
var mType prompb.LabelMatcher_Type
switch m.Type {
case labels.MatchEqual:
mType = prompb.LabelMatcher_EQ
case labels.MatchNotEqual:
mType = prompb.LabelMatcher_NEQ
case labels.MatchRegexp:
mType = prompb.LabelMatcher_RE
case labels.MatchNotRegexp:
mType = prompb.LabelMatcher_NRE
default:
return nil, errors.New("invalid matcher type")
}
pbMatchers = append(pbMatchers, &prompb.LabelMatcher{
Type: mType,
Name: m.Name,
Value: m.Value,
})
}
return pbMatchers, nil
}
// FromLabelMatchers parses protobuf label matchers to Prometheus label matchers.
func FromLabelMatchers(matchers []*prompb.LabelMatcher) ([]*labels.Matcher, error) {
result := make([]*labels.Matcher, 0, len(matchers))
for _, matcher := range matchers {
var mtype labels.MatchType
switch matcher.Type {
case prompb.LabelMatcher_EQ:
mtype = labels.MatchEqual
case prompb.LabelMatcher_NEQ:
mtype = labels.MatchNotEqual
case prompb.LabelMatcher_RE:
mtype = labels.MatchRegexp
case prompb.LabelMatcher_NRE:
mtype = labels.MatchNotRegexp
default:
return nil, errors.New("invalid matcher type")
}
matcher, err := labels.NewMatcher(mtype, matcher.Name, matcher.Value)
if err != nil {
return nil, err
}
result = append(result, matcher)
}
return result, nil
}
func exemplarProtoToExemplar(ep prompb.Exemplar) exemplar.Exemplar {
timestamp := ep.Timestamp
return exemplar.Exemplar{
Labels: labelProtosToLabels(ep.Labels),
Value: ep.Value,
Ts: timestamp,
HasTs: timestamp != 0,
}
}
// HistogramProtoToHistogram extracts a (normal integer) Histogram from the
// provided proto message. The caller has to make sure that the proto message
// represents an interger histogram and not a float histogram.
func HistogramProtoToHistogram(hp prompb.Histogram) *histogram.Histogram {
return &histogram.Histogram{
Schema: hp.Schema,
ZeroThreshold: hp.ZeroThreshold,
ZeroCount: hp.GetZeroCountInt(),
Count: hp.GetCountInt(),
Sum: hp.Sum,
PositiveSpans: spansProtoToSpans(hp.GetPositiveSpans()),
PositiveBuckets: hp.GetPositiveDeltas(),
NegativeSpans: spansProtoToSpans(hp.GetNegativeSpans()),
NegativeBuckets: hp.GetNegativeDeltas(),
}
}
func spansProtoToSpans(s []*prompb.BucketSpan) []histogram.Span {
spans := make([]histogram.Span, len(s))
for i := 0; i < len(s); i++ {
spans[i] = histogram.Span{Offset: s[i].Offset, Length: s[i].Length}
}
return spans
}
func HistogramToHistogramProto(timestamp int64, h *histogram.Histogram) prompb.Histogram {
return prompb.Histogram{
Count: &prompb.Histogram_CountInt{CountInt: h.Count},
Sum: h.Sum,
Schema: h.Schema,
ZeroThreshold: h.ZeroThreshold,
ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: h.ZeroCount},
NegativeSpans: spansToSpansProto(h.NegativeSpans),
NegativeDeltas: h.NegativeBuckets,
PositiveSpans: spansToSpansProto(h.PositiveSpans),
PositiveDeltas: h.PositiveBuckets,
Timestamp: timestamp,
}
}
func spansToSpansProto(s []histogram.Span) []*prompb.BucketSpan {
spans := make([]*prompb.BucketSpan, len(s))
for i := 0; i < len(s); i++ {
spans[i] = &prompb.BucketSpan{Offset: s[i].Offset, Length: s[i].Length}
}
return spans
}
// LabelProtosToMetric unpack a []*prompb.Label to a model.Metric
func LabelProtosToMetric(labelPairs []*prompb.Label) model.Metric {
metric := make(model.Metric, len(labelPairs))
for _, l := range labelPairs {
metric[model.LabelName(l.Name)] = model.LabelValue(l.Value)
}
return metric
}
func labelProtosToLabels(labelPairs []prompb.Label) labels.Labels {
b := labels.ScratchBuilder{}
for _, l := range labelPairs {
b.Add(l.Name, l.Value)
}
b.Sort()
return b.Labels()
}
// labelsToLabelsProto transforms labels into prompb labels. The buffer slice
// will be used to avoid allocations if it is big enough to store the labels.
func labelsToLabelsProto(lbls labels.Labels, buf []prompb.Label) []prompb.Label {
result := buf[:0]
lbls.Range(func(l labels.Label) {
result = append(result, prompb.Label{
Name: l.Name,
Value: l.Value,
})
})
return result
}
// metricTypeToMetricTypeProto transforms a Prometheus metricType into prompb metricType. Since the former is a string we need to transform it to an enum.
func metricTypeToMetricTypeProto(t textparse.MetricType) prompb.MetricMetadata_MetricType {
mt := strings.ToUpper(string(t))
v, ok := prompb.MetricMetadata_MetricType_value[mt]
if !ok {
return prompb.MetricMetadata_UNKNOWN
}
return prompb.MetricMetadata_MetricType(v)
}
// DecodeWriteRequest from an io.Reader into a prompb.WriteRequest, handling
// snappy decompression.
func DecodeWriteRequest(r io.Reader) (*prompb.WriteRequest, error) {
compressed, err := io.ReadAll(r)
if err != nil {
return nil, err
}
reqBuf, err := snappy.Decode(nil, compressed)
if err != nil {
return nil, err
}
var req prompb.WriteRequest
if err := proto.Unmarshal(reqBuf, &req); err != nil {
return nil, err
}
return &req, nil
}