prometheus/cmd/promtool/tsdb.go
zenador 69edd8709b
Add warnings (and annotations) to PromQL query results (#12152)
Return annotations (warnings and infos) from PromQL queries

This generalizes the warnings we have already used before (but only for problems with remote read) as "annotations".

Annotations can be warnings or infos (the latter could be false positives). We do not treat them different in the API for now and return them all as "warnings". It would be easy to distinguish them and return infos separately, should that appear useful in the future.

The new annotations are then used to create a lot of warnings or infos during PromQL evaluations. Partially these are things we have wanted for a long time (e.g. inform the user that they have applied `rate` to a metric that doesn't look like a counter), but the new native histograms have created even more needs for those annotations (e.g. if a query tries to aggregate float numbers with histograms).

The annotations added here are not yet complete. A prominent example would be a warning about a range too short for a rate calculation. But such a warnings is more tricky to create with good fidelity and we will tackle it later.

Another TODO is to take annotations into account when evaluating recording rules.

---------

Signed-off-by: Jeanette Tan <jeanette.tan@grafana.com>
2023-09-14 18:57:31 +02:00

695 lines
16 KiB
Go

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package main
import (
"bufio"
"context"
"fmt"
"io"
"math"
"os"
"path/filepath"
"runtime"
"runtime/pprof"
"strconv"
"strings"
"sync"
"text/tabwriter"
"time"
"github.com/alecthomas/units"
"github.com/go-kit/log"
"golang.org/x/exp/slices"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/promql/parser"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/tsdb"
"github.com/prometheus/prometheus/tsdb/chunkenc"
"github.com/prometheus/prometheus/tsdb/chunks"
tsdb_errors "github.com/prometheus/prometheus/tsdb/errors"
"github.com/prometheus/prometheus/tsdb/fileutil"
"github.com/prometheus/prometheus/tsdb/index"
)
const timeDelta = 30000
type writeBenchmark struct {
outPath string
samplesFile string
cleanup bool
numMetrics int
storage *tsdb.DB
cpuprof *os.File
memprof *os.File
blockprof *os.File
mtxprof *os.File
logger log.Logger
}
func benchmarkWrite(outPath, samplesFile string, numMetrics, numScrapes int) error {
b := &writeBenchmark{
outPath: outPath,
samplesFile: samplesFile,
numMetrics: numMetrics,
logger: log.NewLogfmtLogger(log.NewSyncWriter(os.Stderr)),
}
if b.outPath == "" {
dir, err := os.MkdirTemp("", "tsdb_bench")
if err != nil {
return err
}
b.outPath = dir
b.cleanup = true
}
if err := os.RemoveAll(b.outPath); err != nil {
return err
}
if err := os.MkdirAll(b.outPath, 0o777); err != nil {
return err
}
dir := filepath.Join(b.outPath, "storage")
l := log.With(b.logger, "ts", log.DefaultTimestampUTC, "caller", log.DefaultCaller)
st, err := tsdb.Open(dir, l, nil, &tsdb.Options{
RetentionDuration: int64(15 * 24 * time.Hour / time.Millisecond),
MinBlockDuration: int64(2 * time.Hour / time.Millisecond),
}, tsdb.NewDBStats())
if err != nil {
return err
}
st.DisableCompactions()
b.storage = st
var lbs []labels.Labels
if _, err = measureTime("readData", func() error {
f, err := os.Open(b.samplesFile)
if err != nil {
return err
}
defer f.Close()
lbs, err = readPrometheusLabels(f, b.numMetrics)
if err != nil {
return err
}
return nil
}); err != nil {
return err
}
var total uint64
dur, err := measureTime("ingestScrapes", func() error {
if err := b.startProfiling(); err != nil {
return err
}
total, err = b.ingestScrapes(lbs, numScrapes)
if err != nil {
return err
}
return nil
})
if err != nil {
return err
}
fmt.Println(" > total samples:", total)
fmt.Println(" > samples/sec:", float64(total)/dur.Seconds())
if _, err = measureTime("stopStorage", func() error {
if err := b.storage.Close(); err != nil {
return err
}
return b.stopProfiling()
}); err != nil {
return err
}
return nil
}
func (b *writeBenchmark) ingestScrapes(lbls []labels.Labels, scrapeCount int) (uint64, error) {
var mu sync.Mutex
var total uint64
for i := 0; i < scrapeCount; i += 100 {
var wg sync.WaitGroup
lbls := lbls
for len(lbls) > 0 {
l := 1000
if len(lbls) < 1000 {
l = len(lbls)
}
batch := lbls[:l]
lbls = lbls[l:]
wg.Add(1)
go func() {
n, err := b.ingestScrapesShard(batch, 100, int64(timeDelta*i))
if err != nil {
// exitWithError(err)
fmt.Println(" err", err)
}
mu.Lock()
total += n
mu.Unlock()
wg.Done()
}()
}
wg.Wait()
}
fmt.Println("ingestion completed")
return total, nil
}
func (b *writeBenchmark) ingestScrapesShard(lbls []labels.Labels, scrapeCount int, baset int64) (uint64, error) {
ts := baset
type sample struct {
labels labels.Labels
value int64
ref *storage.SeriesRef
}
scrape := make([]*sample, 0, len(lbls))
for _, m := range lbls {
scrape = append(scrape, &sample{
labels: m,
value: 123456789,
})
}
total := uint64(0)
for i := 0; i < scrapeCount; i++ {
app := b.storage.Appender(context.TODO())
ts += timeDelta
for _, s := range scrape {
s.value += 1000
var ref storage.SeriesRef
if s.ref != nil {
ref = *s.ref
}
ref, err := app.Append(ref, s.labels, ts, float64(s.value))
if err != nil {
panic(err)
}
if s.ref == nil {
s.ref = &ref
}
total++
}
if err := app.Commit(); err != nil {
return total, err
}
}
return total, nil
}
func (b *writeBenchmark) startProfiling() error {
var err error
// Start CPU profiling.
b.cpuprof, err = os.Create(filepath.Join(b.outPath, "cpu.prof"))
if err != nil {
return fmt.Errorf("bench: could not create cpu profile: %w", err)
}
if err := pprof.StartCPUProfile(b.cpuprof); err != nil {
return fmt.Errorf("bench: could not start CPU profile: %w", err)
}
// Start memory profiling.
b.memprof, err = os.Create(filepath.Join(b.outPath, "mem.prof"))
if err != nil {
return fmt.Errorf("bench: could not create memory profile: %w", err)
}
runtime.MemProfileRate = 64 * 1024
// Start fatal profiling.
b.blockprof, err = os.Create(filepath.Join(b.outPath, "block.prof"))
if err != nil {
return fmt.Errorf("bench: could not create block profile: %w", err)
}
runtime.SetBlockProfileRate(20)
b.mtxprof, err = os.Create(filepath.Join(b.outPath, "mutex.prof"))
if err != nil {
return fmt.Errorf("bench: could not create mutex profile: %w", err)
}
runtime.SetMutexProfileFraction(20)
return nil
}
func (b *writeBenchmark) stopProfiling() error {
if b.cpuprof != nil {
pprof.StopCPUProfile()
b.cpuprof.Close()
b.cpuprof = nil
}
if b.memprof != nil {
if err := pprof.Lookup("heap").WriteTo(b.memprof, 0); err != nil {
return fmt.Errorf("error writing mem profile: %w", err)
}
b.memprof.Close()
b.memprof = nil
}
if b.blockprof != nil {
if err := pprof.Lookup("block").WriteTo(b.blockprof, 0); err != nil {
return fmt.Errorf("error writing block profile: %w", err)
}
b.blockprof.Close()
b.blockprof = nil
runtime.SetBlockProfileRate(0)
}
if b.mtxprof != nil {
if err := pprof.Lookup("mutex").WriteTo(b.mtxprof, 0); err != nil {
return fmt.Errorf("error writing mutex profile: %w", err)
}
b.mtxprof.Close()
b.mtxprof = nil
runtime.SetMutexProfileFraction(0)
}
return nil
}
func measureTime(stage string, f func() error) (time.Duration, error) {
fmt.Printf(">> start stage=%s\n", stage)
start := time.Now()
if err := f(); err != nil {
return 0, err
}
fmt.Printf(">> completed stage=%s duration=%s\n", stage, time.Since(start))
return time.Since(start), nil
}
func readPrometheusLabels(r io.Reader, n int) ([]labels.Labels, error) {
scanner := bufio.NewScanner(r)
var mets []labels.Labels
hashes := map[uint64]struct{}{}
i := 0
for scanner.Scan() && i < n {
m := make([]labels.Label, 0, 10)
r := strings.NewReplacer("\"", "", "{", "", "}", "")
s := r.Replace(scanner.Text())
labelChunks := strings.Split(s, ",")
for _, labelChunk := range labelChunks {
split := strings.Split(labelChunk, ":")
m = append(m, labels.Label{Name: split[0], Value: split[1]})
}
ml := labels.New(m...) // This sorts by name - order of the k/v labels matters, don't assume we'll always receive them already sorted.
h := ml.Hash()
if _, ok := hashes[h]; ok {
continue
}
mets = append(mets, ml)
hashes[h] = struct{}{}
i++
}
return mets, nil
}
func listBlocks(path string, humanReadable bool) error {
db, err := tsdb.OpenDBReadOnly(path, nil)
if err != nil {
return err
}
defer func() {
err = tsdb_errors.NewMulti(err, db.Close()).Err()
}()
blocks, err := db.Blocks()
if err != nil {
return err
}
printBlocks(blocks, true, humanReadable)
return nil
}
func printBlocks(blocks []tsdb.BlockReader, writeHeader, humanReadable bool) {
tw := tabwriter.NewWriter(os.Stdout, 13, 0, 2, ' ', 0)
defer tw.Flush()
if writeHeader {
fmt.Fprintln(tw, "BLOCK ULID\tMIN TIME\tMAX TIME\tDURATION\tNUM SAMPLES\tNUM CHUNKS\tNUM SERIES\tSIZE")
}
for _, b := range blocks {
meta := b.Meta()
fmt.Fprintf(tw,
"%v\t%v\t%v\t%v\t%v\t%v\t%v\t%v\n",
meta.ULID,
getFormatedTime(meta.MinTime, humanReadable),
getFormatedTime(meta.MaxTime, humanReadable),
time.Duration(meta.MaxTime-meta.MinTime)*time.Millisecond,
meta.Stats.NumSamples,
meta.Stats.NumChunks,
meta.Stats.NumSeries,
getFormatedBytes(b.Size(), humanReadable),
)
}
}
func getFormatedTime(timestamp int64, humanReadable bool) string {
if humanReadable {
return time.Unix(timestamp/1000, 0).UTC().String()
}
return strconv.FormatInt(timestamp, 10)
}
func getFormatedBytes(bytes int64, humanReadable bool) string {
if humanReadable {
return units.Base2Bytes(bytes).String()
}
return strconv.FormatInt(bytes, 10)
}
func openBlock(path, blockID string) (*tsdb.DBReadOnly, tsdb.BlockReader, error) {
db, err := tsdb.OpenDBReadOnly(path, nil)
if err != nil {
return nil, nil, err
}
if blockID == "" {
blockID, err = db.LastBlockID()
if err != nil {
return nil, nil, err
}
}
b, err := db.Block(blockID)
if err != nil {
return nil, nil, err
}
return db, b, nil
}
func analyzeBlock(ctx context.Context, path, blockID string, limit int, runExtended bool) error {
db, block, err := openBlock(path, blockID)
if err != nil {
return err
}
defer func() {
err = tsdb_errors.NewMulti(err, db.Close()).Err()
}()
meta := block.Meta()
fmt.Printf("Block ID: %s\n", meta.ULID)
// Presume 1ms resolution that Prometheus uses.
fmt.Printf("Duration: %s\n", (time.Duration(meta.MaxTime-meta.MinTime) * 1e6).String())
fmt.Printf("Series: %d\n", meta.Stats.NumSeries)
ir, err := block.Index()
if err != nil {
return err
}
defer ir.Close()
allLabelNames, err := ir.LabelNames(ctx)
if err != nil {
return err
}
fmt.Printf("Label names: %d\n", len(allLabelNames))
type postingInfo struct {
key string
metric uint64
}
postingInfos := []postingInfo{}
printInfo := func(postingInfos []postingInfo) {
slices.SortFunc(postingInfos, func(a, b postingInfo) bool { return a.metric > b.metric })
for i, pc := range postingInfos {
if i >= limit {
break
}
fmt.Printf("%d %s\n", pc.metric, pc.key)
}
}
labelsUncovered := map[string]uint64{}
labelpairsUncovered := map[string]uint64{}
labelpairsCount := map[string]uint64{}
entries := 0
p, err := ir.Postings(ctx, "", "") // The special all key.
if err != nil {
return err
}
chks := []chunks.Meta{}
builder := labels.ScratchBuilder{}
for p.Next() {
if err = ir.Series(p.At(), &builder, &chks); err != nil {
return err
}
// Amount of the block time range not covered by this series.
uncovered := uint64(meta.MaxTime-meta.MinTime) - uint64(chks[len(chks)-1].MaxTime-chks[0].MinTime)
builder.Labels().Range(func(lbl labels.Label) {
key := lbl.Name + "=" + lbl.Value
labelsUncovered[lbl.Name] += uncovered
labelpairsUncovered[key] += uncovered
labelpairsCount[key]++
entries++
})
}
if p.Err() != nil {
return p.Err()
}
fmt.Printf("Postings (unique label pairs): %d\n", len(labelpairsUncovered))
fmt.Printf("Postings entries (total label pairs): %d\n", entries)
postingInfos = postingInfos[:0]
for k, m := range labelpairsUncovered {
postingInfos = append(postingInfos, postingInfo{k, uint64(float64(m) / float64(meta.MaxTime-meta.MinTime))})
}
fmt.Printf("\nLabel pairs most involved in churning:\n")
printInfo(postingInfos)
postingInfos = postingInfos[:0]
for k, m := range labelsUncovered {
postingInfos = append(postingInfos, postingInfo{k, uint64(float64(m) / float64(meta.MaxTime-meta.MinTime))})
}
fmt.Printf("\nLabel names most involved in churning:\n")
printInfo(postingInfos)
postingInfos = postingInfos[:0]
for k, m := range labelpairsCount {
postingInfos = append(postingInfos, postingInfo{k, m})
}
fmt.Printf("\nMost common label pairs:\n")
printInfo(postingInfos)
postingInfos = postingInfos[:0]
for _, n := range allLabelNames {
values, err := ir.SortedLabelValues(ctx, n)
if err != nil {
return err
}
var cumulativeLength uint64
for _, str := range values {
cumulativeLength += uint64(len(str))
}
postingInfos = append(postingInfos, postingInfo{n, cumulativeLength})
}
fmt.Printf("\nLabel names with highest cumulative label value length:\n")
printInfo(postingInfos)
postingInfos = postingInfos[:0]
for _, n := range allLabelNames {
lv, err := ir.SortedLabelValues(ctx, n)
if err != nil {
return err
}
postingInfos = append(postingInfos, postingInfo{n, uint64(len(lv))})
}
fmt.Printf("\nHighest cardinality labels:\n")
printInfo(postingInfos)
postingInfos = postingInfos[:0]
lv, err := ir.SortedLabelValues(ctx, "__name__")
if err != nil {
return err
}
for _, n := range lv {
postings, err := ir.Postings(ctx, "__name__", n)
if err != nil {
return err
}
count := 0
for postings.Next() {
count++
}
if postings.Err() != nil {
return postings.Err()
}
postingInfos = append(postingInfos, postingInfo{n, uint64(count)})
}
fmt.Printf("\nHighest cardinality metric names:\n")
printInfo(postingInfos)
if runExtended {
return analyzeCompaction(ctx, block, ir)
}
return nil
}
func analyzeCompaction(ctx context.Context, block tsdb.BlockReader, indexr tsdb.IndexReader) (err error) {
n, v := index.AllPostingsKey()
postingsr, err := indexr.Postings(ctx, n, v)
if err != nil {
return err
}
chunkr, err := block.Chunks()
if err != nil {
return err
}
defer func() {
err = tsdb_errors.NewMulti(err, chunkr.Close()).Err()
}()
const maxSamplesPerChunk = 120
nBuckets := 10
histogram := make([]int, nBuckets)
totalChunks := 0
var builder labels.ScratchBuilder
for postingsr.Next() {
var chks []chunks.Meta
if err := indexr.Series(postingsr.At(), &builder, &chks); err != nil {
return err
}
for _, chk := range chks {
// Load the actual data of the chunk.
chk, err := chunkr.Chunk(chk)
if err != nil {
return err
}
chunkSize := math.Min(float64(chk.NumSamples()), maxSamplesPerChunk)
// Calculate the bucket for the chunk and increment it in the histogram.
bucket := int(math.Ceil(float64(nBuckets)*chunkSize/maxSamplesPerChunk)) - 1
histogram[bucket]++
totalChunks++
}
}
fmt.Printf("\nCompaction analysis:\n")
fmt.Println("Fullness: Amount of samples in chunks (100% is 120 samples)")
// Normalize absolute counts to percentages and print them out.
for bucket, count := range histogram {
percentage := 100.0 * count / totalChunks
fmt.Printf("%7d%%: ", (bucket+1)*10)
for j := 0; j < percentage; j++ {
fmt.Printf("#")
}
fmt.Println()
}
return nil
}
func dumpSamples(ctx context.Context, path string, mint, maxt int64, match string) (err error) {
db, err := tsdb.OpenDBReadOnly(path, nil)
if err != nil {
return err
}
defer func() {
err = tsdb_errors.NewMulti(err, db.Close()).Err()
}()
q, err := db.Querier(mint, maxt)
if err != nil {
return err
}
defer q.Close()
matchers, err := parser.ParseMetricSelector(match)
if err != nil {
return err
}
ss := q.Select(ctx, false, nil, matchers...)
for ss.Next() {
series := ss.At()
lbs := series.Labels()
it := series.Iterator(nil)
for it.Next() == chunkenc.ValFloat {
ts, val := it.At()
fmt.Printf("%s %g %d\n", lbs, val, ts)
}
for it.Next() == chunkenc.ValFloatHistogram {
ts, fh := it.AtFloatHistogram()
fmt.Printf("%s %s %d\n", lbs, fh.String(), ts)
}
for it.Next() == chunkenc.ValHistogram {
ts, h := it.AtHistogram()
fmt.Printf("%s %s %d\n", lbs, h.String(), ts)
}
if it.Err() != nil {
return ss.Err()
}
}
if ws := ss.Warnings(); len(ws) > 0 {
return tsdb_errors.NewMulti(ws.AsErrors()...).Err()
}
if ss.Err() != nil {
return ss.Err()
}
return nil
}
func checkErr(err error) int {
if err != nil {
fmt.Fprintln(os.Stderr, err)
return 1
}
return 0
}
func backfillOpenMetrics(path, outputDir string, humanReadable, quiet bool, maxBlockDuration time.Duration) int {
inputFile, err := fileutil.OpenMmapFile(path)
if err != nil {
return checkErr(err)
}
defer inputFile.Close()
if err := os.MkdirAll(outputDir, 0o777); err != nil {
return checkErr(fmt.Errorf("create output dir: %w", err))
}
return checkErr(backfill(5000, inputFile.Bytes(), outputDir, humanReadable, quiet, maxBlockDuration))
}