prometheus/model/histogram/float_histogram.go
Filip Petkovski 583f3e587c
Optimize histogram iterators (#13340)
Optimize histogram iterators

Histogram iterators allocate new objects in the AtHistogram and
AtFloatHistogram methods, which makes calculating rates over long
ranges expensive.

In #13215 we allowed an existing object to be reused
when converting an integer histogram to a float histogram. This commit follows
the same idea and allows injecting an existing object in the AtHistogram and
AtFloatHistogram methods. When the injected value is nil, iterators allocate
new histograms, otherwise they populate and return the injected object.

The commit also adds a CopyTo method to Histogram and FloatHistogram which
is used in the BufferedIterator to overwrite items in the ring instead of making
new copies.

Note that a specialized HPoint pool is needed for all of this to work 
(`matrixSelectorHPool`).

---------

Signed-off-by: Filip Petkovski <filip.petkovsky@gmail.com>
Co-authored-by: George Krajcsovits <krajorama@users.noreply.github.com>
2024-01-23 17:02:14 +01:00

1205 lines
41 KiB
Go

// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package histogram
import (
"fmt"
"math"
"strings"
)
// FloatHistogram is similar to Histogram but uses float64 for all
// counts. Additionally, bucket counts are absolute and not deltas.
//
// A FloatHistogram is needed by PromQL to handle operations that might result
// in fractional counts. Since the counts in a histogram are unlikely to be too
// large to be represented precisely by a float64, a FloatHistogram can also be
// used to represent a histogram with integer counts and thus serves as a more
// generalized representation.
type FloatHistogram struct {
// Counter reset information.
CounterResetHint CounterResetHint
// Currently valid schema numbers are -4 <= n <= 8. They are all for
// base-2 bucket schemas, where 1 is a bucket boundary in each case, and
// then each power of two is divided into 2^n logarithmic buckets. Or
// in other words, each bucket boundary is the previous boundary times
// 2^(2^-n).
Schema int32
// Width of the zero bucket.
ZeroThreshold float64
// Observations falling into the zero bucket. Must be zero or positive.
ZeroCount float64
// Total number of observations. Must be zero or positive.
Count float64
// Sum of observations. This is also used as the stale marker.
Sum float64
// Spans for positive and negative buckets (see Span below).
PositiveSpans, NegativeSpans []Span
// Observation counts in buckets. Each represents an absolute count and
// must be zero or positive.
PositiveBuckets, NegativeBuckets []float64
}
// Copy returns a deep copy of the Histogram.
func (h *FloatHistogram) Copy() *FloatHistogram {
c := FloatHistogram{
CounterResetHint: h.CounterResetHint,
Schema: h.Schema,
ZeroThreshold: h.ZeroThreshold,
ZeroCount: h.ZeroCount,
Count: h.Count,
Sum: h.Sum,
}
if len(h.PositiveSpans) != 0 {
c.PositiveSpans = make([]Span, len(h.PositiveSpans))
copy(c.PositiveSpans, h.PositiveSpans)
}
if len(h.NegativeSpans) != 0 {
c.NegativeSpans = make([]Span, len(h.NegativeSpans))
copy(c.NegativeSpans, h.NegativeSpans)
}
if len(h.PositiveBuckets) != 0 {
c.PositiveBuckets = make([]float64, len(h.PositiveBuckets))
copy(c.PositiveBuckets, h.PositiveBuckets)
}
if len(h.NegativeBuckets) != 0 {
c.NegativeBuckets = make([]float64, len(h.NegativeBuckets))
copy(c.NegativeBuckets, h.NegativeBuckets)
}
return &c
}
// CopyTo makes a deep copy into the given FloatHistogram.
// The destination object has to be a non-nil pointer.
func (h *FloatHistogram) CopyTo(to *FloatHistogram) {
to.CounterResetHint = h.CounterResetHint
to.Schema = h.Schema
to.ZeroThreshold = h.ZeroThreshold
to.ZeroCount = h.ZeroCount
to.Count = h.Count
to.Sum = h.Sum
to.PositiveSpans = resize(to.PositiveSpans, len(h.PositiveSpans))
copy(to.PositiveSpans, h.PositiveSpans)
to.NegativeSpans = resize(to.NegativeSpans, len(h.NegativeSpans))
copy(to.NegativeSpans, h.NegativeSpans)
to.PositiveBuckets = resize(to.PositiveBuckets, len(h.PositiveBuckets))
copy(to.PositiveBuckets, h.PositiveBuckets)
to.NegativeBuckets = resize(to.NegativeBuckets, len(h.NegativeBuckets))
copy(to.NegativeBuckets, h.NegativeBuckets)
}
// CopyToSchema works like Copy, but the returned deep copy has the provided
// target schema, which must be ≤ the original schema (i.e. it must have a lower
// resolution).
func (h *FloatHistogram) CopyToSchema(targetSchema int32) *FloatHistogram {
if targetSchema == h.Schema {
// Fast path.
return h.Copy()
}
if targetSchema > h.Schema {
panic(fmt.Errorf("cannot copy from schema %d to %d", h.Schema, targetSchema))
}
c := FloatHistogram{
Schema: targetSchema,
ZeroThreshold: h.ZeroThreshold,
ZeroCount: h.ZeroCount,
Count: h.Count,
Sum: h.Sum,
}
c.PositiveSpans, c.PositiveBuckets = reduceResolution(h.PositiveSpans, h.PositiveBuckets, h.Schema, targetSchema, false, false)
c.NegativeSpans, c.NegativeBuckets = reduceResolution(h.NegativeSpans, h.NegativeBuckets, h.Schema, targetSchema, false, false)
return &c
}
// String returns a string representation of the Histogram.
func (h *FloatHistogram) String() string {
var sb strings.Builder
fmt.Fprintf(&sb, "{count:%g, sum:%g", h.Count, h.Sum)
var nBuckets []Bucket[float64]
for it := h.NegativeBucketIterator(); it.Next(); {
bucket := it.At()
if bucket.Count != 0 {
nBuckets = append(nBuckets, it.At())
}
}
for i := len(nBuckets) - 1; i >= 0; i-- {
fmt.Fprintf(&sb, ", %s", nBuckets[i].String())
}
if h.ZeroCount != 0 {
fmt.Fprintf(&sb, ", %s", h.ZeroBucket().String())
}
for it := h.PositiveBucketIterator(); it.Next(); {
bucket := it.At()
if bucket.Count != 0 {
fmt.Fprintf(&sb, ", %s", bucket.String())
}
}
sb.WriteRune('}')
return sb.String()
}
// TestExpression returns the string representation of this histogram as it is used in the internal PromQL testing
// framework as well as in promtool rules unit tests.
// The syntax is described in https://prometheus.io/docs/prometheus/latest/configuration/unit_testing_rules/#series
func (h *FloatHistogram) TestExpression() string {
var res []string
m := h.Copy()
m.Compact(math.MaxInt) // Compact to reduce the number of positive and negative spans to 1.
if m.Schema != 0 {
res = append(res, fmt.Sprintf("schema:%d", m.Schema))
}
if m.Count != 0 {
res = append(res, fmt.Sprintf("count:%g", m.Count))
}
if m.Sum != 0 {
res = append(res, fmt.Sprintf("sum:%g", m.Sum))
}
if m.ZeroCount != 0 {
res = append(res, fmt.Sprintf("z_bucket:%g", m.ZeroCount))
}
if m.ZeroThreshold != 0 {
res = append(res, fmt.Sprintf("z_bucket_w:%g", m.ZeroThreshold))
}
addBuckets := func(kind, bucketsKey, offsetKey string, buckets []float64, spans []Span) []string {
if len(spans) > 1 {
panic(fmt.Sprintf("histogram with multiple %s spans not supported", kind))
}
for _, span := range spans {
if span.Offset != 0 {
res = append(res, fmt.Sprintf("%s:%d", offsetKey, span.Offset))
}
}
var bucketStr []string
for _, bucket := range buckets {
bucketStr = append(bucketStr, fmt.Sprintf("%g", bucket))
}
if len(bucketStr) > 0 {
res = append(res, fmt.Sprintf("%s:[%s]", bucketsKey, strings.Join(bucketStr, " ")))
}
return res
}
res = addBuckets("positive", "buckets", "offset", m.PositiveBuckets, m.PositiveSpans)
res = addBuckets("negative", "n_buckets", "n_offset", m.NegativeBuckets, m.NegativeSpans)
return "{{" + strings.Join(res, " ") + "}}"
}
// ZeroBucket returns the zero bucket.
func (h *FloatHistogram) ZeroBucket() Bucket[float64] {
return Bucket[float64]{
Lower: -h.ZeroThreshold,
Upper: h.ZeroThreshold,
LowerInclusive: true,
UpperInclusive: true,
Count: h.ZeroCount,
}
}
// Mul multiplies the FloatHistogram by the provided factor, i.e. it scales all
// bucket counts including the zero bucket and the count and the sum of
// observations. The bucket layout stays the same. This method changes the
// receiving histogram directly (rather than acting on a copy). It returns a
// pointer to the receiving histogram for convenience.
func (h *FloatHistogram) Mul(factor float64) *FloatHistogram {
h.ZeroCount *= factor
h.Count *= factor
h.Sum *= factor
for i := range h.PositiveBuckets {
h.PositiveBuckets[i] *= factor
}
for i := range h.NegativeBuckets {
h.NegativeBuckets[i] *= factor
}
return h
}
// Div works like Mul but divides instead of multiplies.
// When dividing by 0, everything will be set to Inf.
func (h *FloatHistogram) Div(scalar float64) *FloatHistogram {
h.ZeroCount /= scalar
h.Count /= scalar
h.Sum /= scalar
for i := range h.PositiveBuckets {
h.PositiveBuckets[i] /= scalar
}
for i := range h.NegativeBuckets {
h.NegativeBuckets[i] /= scalar
}
return h
}
// Add adds the provided other histogram to the receiving histogram. Count, Sum,
// and buckets from the other histogram are added to the corresponding
// components of the receiving histogram. Buckets in the other histogram that do
// not exist in the receiving histogram are inserted into the latter. The
// resulting histogram might have buckets with a population of zero or directly
// adjacent spans (offset=0). To normalize those, call the Compact method.
//
// The method reconciles differences in the zero threshold and in the schema, and
// changes them if needed. The other histogram will not be modified in any case.
//
// This method returns a pointer to the receiving histogram for convenience.
func (h *FloatHistogram) Add(other *FloatHistogram) *FloatHistogram {
switch {
case other.CounterResetHint == h.CounterResetHint:
// Adding apples to apples, all good. No need to change anything.
case h.CounterResetHint == GaugeType:
// Adding something else to a gauge. That's probably OK. Outcome is a gauge.
// Nothing to do since the receiver is already marked as gauge.
case other.CounterResetHint == GaugeType:
// Similar to before, but this time the receiver is "something else" and we have to change it to gauge.
h.CounterResetHint = GaugeType
case h.CounterResetHint == UnknownCounterReset:
// With the receiver's CounterResetHint being "unknown", this could still be legitimate
// if the caller knows what they are doing. Outcome is then again "unknown".
// No need to do anything since the receiver's CounterResetHint is already "unknown".
case other.CounterResetHint == UnknownCounterReset:
// Similar to before, but now we have to set the receiver's CounterResetHint to "unknown".
h.CounterResetHint = UnknownCounterReset
default:
// All other cases shouldn't actually happen.
// They are a direct collision of CounterReset and NotCounterReset.
// Conservatively set the CounterResetHint to "unknown" and isse a warning.
h.CounterResetHint = UnknownCounterReset
// TODO(trevorwhitney): Actually issue the warning as soon as the plumbing for it is in place
}
otherZeroCount := h.reconcileZeroBuckets(other)
h.ZeroCount += otherZeroCount
h.Count += other.Count
h.Sum += other.Sum
var (
hPositiveSpans = h.PositiveSpans
hPositiveBuckets = h.PositiveBuckets
hNegativeSpans = h.NegativeSpans
hNegativeBuckets = h.NegativeBuckets
otherPositiveSpans = other.PositiveSpans
otherPositiveBuckets = other.PositiveBuckets
otherNegativeSpans = other.NegativeSpans
otherNegativeBuckets = other.NegativeBuckets
)
switch {
case other.Schema < h.Schema:
hPositiveSpans, hPositiveBuckets = reduceResolution(hPositiveSpans, hPositiveBuckets, h.Schema, other.Schema, false, true)
hNegativeSpans, hNegativeBuckets = reduceResolution(hNegativeSpans, hNegativeBuckets, h.Schema, other.Schema, false, true)
h.Schema = other.Schema
case other.Schema > h.Schema:
otherPositiveSpans, otherPositiveBuckets = reduceResolution(otherPositiveSpans, otherPositiveBuckets, other.Schema, h.Schema, false, false)
otherNegativeSpans, otherNegativeBuckets = reduceResolution(otherNegativeSpans, otherNegativeBuckets, other.Schema, h.Schema, false, false)
}
h.PositiveSpans, h.PositiveBuckets = addBuckets(h.Schema, h.ZeroThreshold, false, hPositiveSpans, hPositiveBuckets, otherPositiveSpans, otherPositiveBuckets)
h.NegativeSpans, h.NegativeBuckets = addBuckets(h.Schema, h.ZeroThreshold, false, hNegativeSpans, hNegativeBuckets, otherNegativeSpans, otherNegativeBuckets)
return h
}
// Sub works like Add but subtracts the other histogram.
func (h *FloatHistogram) Sub(other *FloatHistogram) *FloatHistogram {
otherZeroCount := h.reconcileZeroBuckets(other)
h.ZeroCount -= otherZeroCount
h.Count -= other.Count
h.Sum -= other.Sum
var (
hPositiveSpans = h.PositiveSpans
hPositiveBuckets = h.PositiveBuckets
hNegativeSpans = h.NegativeSpans
hNegativeBuckets = h.NegativeBuckets
otherPositiveSpans = other.PositiveSpans
otherPositiveBuckets = other.PositiveBuckets
otherNegativeSpans = other.NegativeSpans
otherNegativeBuckets = other.NegativeBuckets
)
switch {
case other.Schema < h.Schema:
hPositiveSpans, hPositiveBuckets = reduceResolution(hPositiveSpans, hPositiveBuckets, h.Schema, other.Schema, false, true)
hNegativeSpans, hNegativeBuckets = reduceResolution(hNegativeSpans, hNegativeBuckets, h.Schema, other.Schema, false, true)
h.Schema = other.Schema
case other.Schema > h.Schema:
otherPositiveSpans, otherPositiveBuckets = reduceResolution(otherPositiveSpans, otherPositiveBuckets, other.Schema, h.Schema, false, false)
otherNegativeSpans, otherNegativeBuckets = reduceResolution(otherNegativeSpans, otherNegativeBuckets, other.Schema, h.Schema, false, false)
}
h.PositiveSpans, h.PositiveBuckets = addBuckets(h.Schema, h.ZeroThreshold, true, hPositiveSpans, hPositiveBuckets, otherPositiveSpans, otherPositiveBuckets)
h.NegativeSpans, h.NegativeBuckets = addBuckets(h.Schema, h.ZeroThreshold, true, hNegativeSpans, hNegativeBuckets, otherNegativeSpans, otherNegativeBuckets)
return h
}
// Equals returns true if the given float histogram matches exactly.
// Exact match is when there are no new buckets (even empty) and no missing buckets,
// and all the bucket values match. Spans can have different empty length spans in between,
// but they must represent the same bucket layout to match.
// Sum, Count, ZeroCount and bucket values are compared based on their bit patterns
// because this method is about data equality rather than mathematical equality.
func (h *FloatHistogram) Equals(h2 *FloatHistogram) bool {
if h2 == nil {
return false
}
if h.Schema != h2.Schema || h.ZeroThreshold != h2.ZeroThreshold ||
math.Float64bits(h.ZeroCount) != math.Float64bits(h2.ZeroCount) ||
math.Float64bits(h.Count) != math.Float64bits(h2.Count) ||
math.Float64bits(h.Sum) != math.Float64bits(h2.Sum) {
return false
}
if !spansMatch(h.PositiveSpans, h2.PositiveSpans) {
return false
}
if !spansMatch(h.NegativeSpans, h2.NegativeSpans) {
return false
}
if !floatBucketsMatch(h.PositiveBuckets, h2.PositiveBuckets) {
return false
}
if !floatBucketsMatch(h.NegativeBuckets, h2.NegativeBuckets) {
return false
}
return true
}
// Size returns the total size of the FloatHistogram, which includes the size of the pointer
// to FloatHistogram, all its fields, and all elements contained in slices.
// NOTE: this is only valid for 64 bit architectures.
func (h *FloatHistogram) Size() int {
// Size of each slice separately.
posSpanSize := len(h.PositiveSpans) * 8 // 8 bytes (int32 + uint32).
negSpanSize := len(h.NegativeSpans) * 8 // 8 bytes (int32 + uint32).
posBucketSize := len(h.PositiveBuckets) * 8 // 8 bytes (float64).
negBucketSize := len(h.NegativeBuckets) * 8 // 8 bytes (float64).
// Total size of the struct.
// fh is 8 bytes.
// fh.CounterResetHint is 4 bytes (1 byte bool + 3 bytes padding).
// fh.Schema is 4 bytes.
// fh.ZeroThreshold is 8 bytes.
// fh.ZeroCount is 8 bytes.
// fh.Count is 8 bytes.
// fh.Sum is 8 bytes.
// fh.PositiveSpans is 24 bytes.
// fh.NegativeSpans is 24 bytes.
// fh.PositiveBuckets is 24 bytes.
// fh.NegativeBuckets is 24 bytes.
structSize := 144
return structSize + posSpanSize + negSpanSize + posBucketSize + negBucketSize
}
// Compact eliminates empty buckets at the beginning and end of each span, then
// merges spans that are consecutive or at most maxEmptyBuckets apart, and
// finally splits spans that contain more consecutive empty buckets than
// maxEmptyBuckets. (The actual implementation might do something more efficient
// but with the same result.) The compaction happens "in place" in the
// receiving histogram, but a pointer to it is returned for convenience.
//
// The ideal value for maxEmptyBuckets depends on circumstances. The motivation
// to set maxEmptyBuckets > 0 is the assumption that is less overhead to
// represent very few empty buckets explicitly within one span than cutting the
// one span into two to treat the empty buckets as a gap between the two spans,
// both in terms of storage requirement as well as in terms of encoding and
// decoding effort. However, the tradeoffs are subtle. For one, they are
// different in the exposition format vs. in a TSDB chunk vs. for the in-memory
// representation as Go types. In the TSDB, as an additional aspects, the span
// layout is only stored once per chunk, while many histograms with that same
// chunk layout are then only stored with their buckets (so that even a single
// empty bucket will be stored many times).
//
// For the Go types, an additional Span takes 8 bytes. Similarly, an additional
// bucket takes 8 bytes. Therefore, with a single separating empty bucket, both
// options have the same storage requirement, but the single-span solution is
// easier to iterate through. Still, the safest bet is to use maxEmptyBuckets==0
// and only use a larger number if you know what you are doing.
func (h *FloatHistogram) Compact(maxEmptyBuckets int) *FloatHistogram {
h.PositiveBuckets, h.PositiveSpans = compactBuckets(
h.PositiveBuckets, h.PositiveSpans, maxEmptyBuckets, false,
)
h.NegativeBuckets, h.NegativeSpans = compactBuckets(
h.NegativeBuckets, h.NegativeSpans, maxEmptyBuckets, false,
)
return h
}
// DetectReset returns true if the receiving histogram is missing any buckets
// that have a non-zero population in the provided previous histogram. It also
// returns true if any count (in any bucket, in the zero count, or in the count
// of observations, but NOT the sum of observations) is smaller in the receiving
// histogram compared to the previous histogram. Otherwise, it returns false.
//
// This method will shortcut to true if a CounterReset is detected, and shortcut
// to false if NotCounterReset is detected. Otherwise it will do the work to detect
// a reset.
//
// Special behavior in case the Schema or the ZeroThreshold are not the same in
// both histograms:
//
// - A decrease of the ZeroThreshold or an increase of the Schema (i.e. an
// increase of resolution) can only happen together with a reset. Thus, the
// method returns true in either case.
//
// - Upon an increase of the ZeroThreshold, the buckets in the previous
// histogram that fall within the new ZeroThreshold are added to the ZeroCount
// of the previous histogram (without mutating the provided previous
// histogram). The scenario that a populated bucket of the previous histogram
// is partially within, partially outside of the new ZeroThreshold, can only
// happen together with a counter reset and therefore shortcuts to returning
// true.
//
// - Upon a decrease of the Schema, the buckets of the previous histogram are
// merged so that they match the new, lower-resolution schema (again without
// mutating the provided previous histogram).
func (h *FloatHistogram) DetectReset(previous *FloatHistogram) bool {
if h.CounterResetHint == CounterReset {
return true
}
if h.CounterResetHint == NotCounterReset {
return false
}
// In all other cases of CounterResetHint (UnknownCounterReset and GaugeType),
// we go on as we would otherwise, for reasons explained below.
//
// If the CounterResetHint is UnknownCounterReset, we do not know yet if this histogram comes
// with a counter reset. Therefore, we have to do all the detailed work to find out if there
// is a counter reset or not.
// We do the same if the CounterResetHint is GaugeType, which should not happen, but PromQL still
// allows the user to apply functions to gauge histograms that are only meant for counter histograms.
// In this case, we treat the gauge histograms as counter histograms. A warning should be returned
// to the user in this case.
if h.Count < previous.Count {
return true
}
if h.Schema > previous.Schema {
return true
}
if h.ZeroThreshold < previous.ZeroThreshold {
// ZeroThreshold decreased.
return true
}
previousZeroCount, newThreshold := previous.zeroCountForLargerThreshold(h.ZeroThreshold)
if newThreshold != h.ZeroThreshold {
// ZeroThreshold is within a populated bucket in previous
// histogram.
return true
}
if h.ZeroCount < previousZeroCount {
return true
}
currIt := h.floatBucketIterator(true, h.ZeroThreshold, h.Schema)
prevIt := previous.floatBucketIterator(true, h.ZeroThreshold, h.Schema)
if detectReset(&currIt, &prevIt) {
return true
}
currIt = h.floatBucketIterator(false, h.ZeroThreshold, h.Schema)
prevIt = previous.floatBucketIterator(false, h.ZeroThreshold, h.Schema)
return detectReset(&currIt, &prevIt)
}
func detectReset(currIt, prevIt *floatBucketIterator) bool {
if !prevIt.Next() {
return false // If no buckets in previous histogram, nothing can be reset.
}
prevBucket := prevIt.strippedAt()
if !currIt.Next() {
// No bucket in current, but at least one in previous
// histogram. Check if any of those are non-zero, in which case
// this is a reset.
for {
if prevBucket.count != 0 {
return true
}
if !prevIt.Next() {
return false
}
}
}
currBucket := currIt.strippedAt()
for {
// Forward currIt until we find the bucket corresponding to prevBucket.
for currBucket.index < prevBucket.index {
if !currIt.Next() {
// Reached end of currIt early, therefore
// previous histogram has a bucket that the
// current one does not have. Unlass all
// remaining buckets in the previous histogram
// are unpopulated, this is a reset.
for {
if prevBucket.count != 0 {
return true
}
if !prevIt.Next() {
return false
}
}
}
currBucket = currIt.strippedAt()
}
if currBucket.index > prevBucket.index {
// Previous histogram has a bucket the current one does
// not have. If it's populated, it's a reset.
if prevBucket.count != 0 {
return true
}
} else {
// We have reached corresponding buckets in both iterators.
// We can finally compare the counts.
if currBucket.count < prevBucket.count {
return true
}
}
if !prevIt.Next() {
// Reached end of prevIt without finding offending buckets.
return false
}
prevBucket = prevIt.strippedAt()
}
}
// PositiveBucketIterator returns a BucketIterator to iterate over all positive
// buckets in ascending order (starting next to the zero bucket and going up).
func (h *FloatHistogram) PositiveBucketIterator() BucketIterator[float64] {
it := h.floatBucketIterator(true, 0, h.Schema)
return &it
}
// NegativeBucketIterator returns a BucketIterator to iterate over all negative
// buckets in descending order (starting next to the zero bucket and going
// down).
func (h *FloatHistogram) NegativeBucketIterator() BucketIterator[float64] {
it := h.floatBucketIterator(false, 0, h.Schema)
return &it
}
// PositiveReverseBucketIterator returns a BucketIterator to iterate over all
// positive buckets in descending order (starting at the highest bucket and
// going down towards the zero bucket).
func (h *FloatHistogram) PositiveReverseBucketIterator() BucketIterator[float64] {
it := newReverseFloatBucketIterator(h.PositiveSpans, h.PositiveBuckets, h.Schema, true)
return &it
}
// NegativeReverseBucketIterator returns a BucketIterator to iterate over all
// negative buckets in ascending order (starting at the lowest bucket and going
// up towards the zero bucket).
func (h *FloatHistogram) NegativeReverseBucketIterator() BucketIterator[float64] {
it := newReverseFloatBucketIterator(h.NegativeSpans, h.NegativeBuckets, h.Schema, false)
return &it
}
// AllBucketIterator returns a BucketIterator to iterate over all negative,
// zero, and positive buckets in ascending order (starting at the lowest bucket
// and going up). If the highest negative bucket or the lowest positive bucket
// overlap with the zero bucket, their upper or lower boundary, respectively, is
// set to the zero threshold.
func (h *FloatHistogram) AllBucketIterator() BucketIterator[float64] {
return &allFloatBucketIterator{
h: h,
leftIter: newReverseFloatBucketIterator(h.NegativeSpans, h.NegativeBuckets, h.Schema, false),
rightIter: h.floatBucketIterator(true, 0, h.Schema),
state: -1,
}
}
// AllReverseBucketIterator returns a BucketIterator to iterate over all negative,
// zero, and positive buckets in descending order (starting at the lowest bucket
// and going up). If the highest negative bucket or the lowest positive bucket
// overlap with the zero bucket, their upper or lower boundary, respectively, is
// set to the zero threshold.
func (h *FloatHistogram) AllReverseBucketIterator() BucketIterator[float64] {
return &allFloatBucketIterator{
h: h,
leftIter: newReverseFloatBucketIterator(h.PositiveSpans, h.PositiveBuckets, h.Schema, true),
rightIter: h.floatBucketIterator(false, 0, h.Schema),
state: -1,
}
}
// Validate validates consistency between span and bucket slices. Also, buckets are checked
// against negative values.
// We do not check for h.Count being at least as large as the sum of the
// counts in the buckets because floating point precision issues can
// create false positives here.
func (h *FloatHistogram) Validate() error {
if err := checkHistogramSpans(h.NegativeSpans, len(h.NegativeBuckets)); err != nil {
return fmt.Errorf("negative side: %w", err)
}
if err := checkHistogramSpans(h.PositiveSpans, len(h.PositiveBuckets)); err != nil {
return fmt.Errorf("positive side: %w", err)
}
var nCount, pCount float64
err := checkHistogramBuckets(h.NegativeBuckets, &nCount, false)
if err != nil {
return fmt.Errorf("negative side: %w", err)
}
err = checkHistogramBuckets(h.PositiveBuckets, &pCount, false)
if err != nil {
return fmt.Errorf("positive side: %w", err)
}
return nil
}
// zeroCountForLargerThreshold returns what the histogram's zero count would be
// if the ZeroThreshold had the provided larger (or equal) value. If the
// provided value is less than the histogram's ZeroThreshold, the method panics.
// If the largerThreshold ends up within a populated bucket of the histogram, it
// is adjusted upwards to the lower limit of that bucket (all in terms of
// absolute values) and that bucket's count is included in the returned
// count. The adjusted threshold is returned, too.
func (h *FloatHistogram) zeroCountForLargerThreshold(largerThreshold float64) (count, threshold float64) {
// Fast path.
if largerThreshold == h.ZeroThreshold {
return h.ZeroCount, largerThreshold
}
if largerThreshold < h.ZeroThreshold {
panic(fmt.Errorf("new threshold %f is less than old threshold %f", largerThreshold, h.ZeroThreshold))
}
outer:
for {
count = h.ZeroCount
i := h.PositiveBucketIterator()
for i.Next() {
b := i.At()
if b.Lower >= largerThreshold {
break
}
count += b.Count // Bucket to be merged into zero bucket.
if b.Upper > largerThreshold {
// New threshold ended up within a bucket. if it's
// populated, we need to adjust largerThreshold before
// we are done here.
if b.Count != 0 {
largerThreshold = b.Upper
}
break
}
}
i = h.NegativeBucketIterator()
for i.Next() {
b := i.At()
if b.Upper <= -largerThreshold {
break
}
count += b.Count // Bucket to be merged into zero bucket.
if b.Lower < -largerThreshold {
// New threshold ended up within a bucket. If
// it's populated, we need to adjust
// largerThreshold and have to redo the whole
// thing because the treatment of the positive
// buckets is invalid now.
if b.Count != 0 {
largerThreshold = -b.Lower
continue outer
}
break
}
}
return count, largerThreshold
}
}
// trimBucketsInZeroBucket removes all buckets that are within the zero
// bucket. It assumes that the zero threshold is at a bucket boundary and that
// the counts in the buckets to remove are already part of the zero count.
func (h *FloatHistogram) trimBucketsInZeroBucket() {
i := h.PositiveBucketIterator()
bucketsIdx := 0
for i.Next() {
b := i.At()
if b.Lower >= h.ZeroThreshold {
break
}
h.PositiveBuckets[bucketsIdx] = 0
bucketsIdx++
}
i = h.NegativeBucketIterator()
bucketsIdx = 0
for i.Next() {
b := i.At()
if b.Upper <= -h.ZeroThreshold {
break
}
h.NegativeBuckets[bucketsIdx] = 0
bucketsIdx++
}
// We are abusing Compact to trim the buckets set to zero
// above. Premature compacting could cause additional cost, but this
// code path is probably rarely used anyway.
h.Compact(0)
}
// reconcileZeroBuckets finds a zero bucket large enough to include the zero
// buckets of both histograms (the receiving histogram and the other histogram)
// with a zero threshold that is not within a populated bucket in either
// histogram. This method modifies the receiving histogram accourdingly, but
// leaves the other histogram as is. Instead, it returns the zero count the
// other histogram would have if it were modified.
func (h *FloatHistogram) reconcileZeroBuckets(other *FloatHistogram) float64 {
otherZeroCount := other.ZeroCount
otherZeroThreshold := other.ZeroThreshold
for otherZeroThreshold != h.ZeroThreshold {
if h.ZeroThreshold > otherZeroThreshold {
otherZeroCount, otherZeroThreshold = other.zeroCountForLargerThreshold(h.ZeroThreshold)
}
if otherZeroThreshold > h.ZeroThreshold {
h.ZeroCount, h.ZeroThreshold = h.zeroCountForLargerThreshold(otherZeroThreshold)
h.trimBucketsInZeroBucket()
}
}
return otherZeroCount
}
// floatBucketIterator is a low-level constructor for bucket iterators.
//
// If positive is true, the returned iterator iterates through the positive
// buckets, otherwise through the negative buckets.
//
// If absoluteStartValue is < the lowest absolute value of any upper bucket
// boundary, the iterator starts with the first bucket. Otherwise, it will skip
// all buckets with an absolute value of their upper boundary ≤
// absoluteStartValue.
//
// targetSchema must be ≤ the schema of FloatHistogram (and of course within the
// legal values for schemas in general). The buckets are merged to match the
// targetSchema prior to iterating (without mutating FloatHistogram).
func (h *FloatHistogram) floatBucketIterator(
positive bool, absoluteStartValue float64, targetSchema int32,
) floatBucketIterator {
if targetSchema > h.Schema {
panic(fmt.Errorf("cannot merge from schema %d to %d", h.Schema, targetSchema))
}
i := floatBucketIterator{
baseBucketIterator: baseBucketIterator[float64, float64]{
schema: h.Schema,
positive: positive,
},
targetSchema: targetSchema,
absoluteStartValue: absoluteStartValue,
boundReachedStartValue: absoluteStartValue == 0,
}
if positive {
i.spans = h.PositiveSpans
i.buckets = h.PositiveBuckets
} else {
i.spans = h.NegativeSpans
i.buckets = h.NegativeBuckets
}
return i
}
// reverseFloatBucketIterator is a low-level constructor for reverse bucket iterators.
func newReverseFloatBucketIterator(
spans []Span, buckets []float64, schema int32, positive bool,
) reverseFloatBucketIterator {
r := reverseFloatBucketIterator{
baseBucketIterator: baseBucketIterator[float64, float64]{
schema: schema,
spans: spans,
buckets: buckets,
positive: positive,
},
}
r.spansIdx = len(r.spans) - 1
r.bucketsIdx = len(r.buckets) - 1
if r.spansIdx >= 0 {
r.idxInSpan = int32(r.spans[r.spansIdx].Length) - 1
}
r.currIdx = 0
for _, s := range r.spans {
r.currIdx += s.Offset + int32(s.Length)
}
return r
}
type floatBucketIterator struct {
baseBucketIterator[float64, float64]
targetSchema int32 // targetSchema is the schema to merge to and must be ≤ schema.
origIdx int32 // The bucket index within the original schema.
absoluteStartValue float64 // Never return buckets with an upper bound ≤ this value.
boundReachedStartValue bool // Has getBound reached absoluteStartValue already?
}
func (i *floatBucketIterator) At() Bucket[float64] {
// Need to use i.targetSchema rather than i.baseBucketIterator.schema.
return i.baseBucketIterator.at(i.targetSchema)
}
func (i *floatBucketIterator) Next() bool {
if i.spansIdx >= len(i.spans) {
return false
}
if i.schema == i.targetSchema {
// Fast path for the common case.
span := i.spans[i.spansIdx]
if i.bucketsIdx == 0 {
// Seed origIdx for the first bucket.
i.currIdx = span.Offset
} else {
i.currIdx++
}
for i.idxInSpan >= span.Length {
// We have exhausted the current span and have to find a new
// one. We even handle pathologic spans of length 0 here.
i.idxInSpan = 0
i.spansIdx++
if i.spansIdx >= len(i.spans) {
return false
}
span = i.spans[i.spansIdx]
i.currIdx += span.Offset
}
i.currCount = i.buckets[i.bucketsIdx]
i.idxInSpan++
i.bucketsIdx++
} else {
// Copy all of these into local variables so that we can forward to the
// next bucket and then roll back if needed.
origIdx, spansIdx, idxInSpan := i.origIdx, i.spansIdx, i.idxInSpan
span := i.spans[spansIdx]
firstPass := true
i.currCount = 0
mergeLoop: // Merge together all buckets from the original schema that fall into one bucket in the targetSchema.
for {
if i.bucketsIdx == 0 {
// Seed origIdx for the first bucket.
origIdx = span.Offset
} else {
origIdx++
}
for idxInSpan >= span.Length {
// We have exhausted the current span and have to find a new
// one. We even handle pathologic spans of length 0 here.
idxInSpan = 0
spansIdx++
if spansIdx >= len(i.spans) {
if firstPass {
return false
}
break mergeLoop
}
span = i.spans[spansIdx]
origIdx += span.Offset
}
currIdx := targetIdx(origIdx, i.schema, i.targetSchema)
switch {
case firstPass:
i.currIdx = currIdx
firstPass = false
case currIdx != i.currIdx:
// Reached next bucket in targetSchema.
// Do not actually forward to the next bucket, but break out.
break mergeLoop
}
i.currCount += i.buckets[i.bucketsIdx]
idxInSpan++
i.bucketsIdx++
i.origIdx, i.spansIdx, i.idxInSpan = origIdx, spansIdx, idxInSpan
if i.schema == i.targetSchema {
// Don't need to test the next bucket for mergeability
// if we have no schema change anyway.
break mergeLoop
}
}
}
// Skip buckets before absoluteStartValue.
// TODO(beorn7): Maybe do something more efficient than this recursive call.
if !i.boundReachedStartValue && getBound(i.currIdx, i.targetSchema) <= i.absoluteStartValue {
return i.Next()
}
i.boundReachedStartValue = true
return true
}
type reverseFloatBucketIterator struct {
baseBucketIterator[float64, float64]
idxInSpan int32 // Changed from uint32 to allow negative values for exhaustion detection.
}
func (i *reverseFloatBucketIterator) Next() bool {
i.currIdx--
if i.bucketsIdx < 0 {
return false
}
for i.idxInSpan < 0 {
// We have exhausted the current span and have to find a new
// one. We'll even handle pathologic spans of length 0.
i.spansIdx--
i.idxInSpan = int32(i.spans[i.spansIdx].Length) - 1
i.currIdx -= i.spans[i.spansIdx+1].Offset
}
i.currCount = i.buckets[i.bucketsIdx]
i.bucketsIdx--
i.idxInSpan--
return true
}
type allFloatBucketIterator struct {
h *FloatHistogram
leftIter reverseFloatBucketIterator
rightIter floatBucketIterator
// -1 means we are iterating negative buckets.
// 0 means it is time for the zero bucket.
// 1 means we are iterating positive buckets.
// Anything else means iteration is over.
state int8
currBucket Bucket[float64]
}
func (i *allFloatBucketIterator) Next() bool {
switch i.state {
case -1:
if i.leftIter.Next() {
i.currBucket = i.leftIter.At()
switch {
case i.currBucket.Upper < 0 && i.currBucket.Upper > -i.h.ZeroThreshold:
i.currBucket.Upper = -i.h.ZeroThreshold
case i.currBucket.Lower > 0 && i.currBucket.Lower < i.h.ZeroThreshold:
i.currBucket.Lower = i.h.ZeroThreshold
}
return true
}
i.state = 0
return i.Next()
case 0:
i.state = 1
if i.h.ZeroCount > 0 {
i.currBucket = Bucket[float64]{
Lower: -i.h.ZeroThreshold,
Upper: i.h.ZeroThreshold,
LowerInclusive: true,
UpperInclusive: true,
Count: i.h.ZeroCount,
// Index is irrelevant for the zero bucket.
}
return true
}
return i.Next()
case 1:
if i.rightIter.Next() {
i.currBucket = i.rightIter.At()
switch {
case i.currBucket.Lower > 0 && i.currBucket.Lower < i.h.ZeroThreshold:
i.currBucket.Lower = i.h.ZeroThreshold
case i.currBucket.Upper < 0 && i.currBucket.Upper > -i.h.ZeroThreshold:
i.currBucket.Upper = -i.h.ZeroThreshold
}
return true
}
i.state = 42
return false
}
return false
}
func (i *allFloatBucketIterator) At() Bucket[float64] {
return i.currBucket
}
// targetIdx returns the bucket index in the target schema for the given bucket
// index idx in the original schema.
func targetIdx(idx, originSchema, targetSchema int32) int32 {
return ((idx - 1) >> (originSchema - targetSchema)) + 1
}
// addBuckets adds the buckets described by spansB/bucketsB to the buckets described by spansA/bucketsA,
// creating missing buckets in spansA/bucketsA as needed.
// It returns the resulting spans/buckets (which must be used instead of the original spansA/bucketsA,
// although spansA/bucketsA might get modified by this function).
// All buckets must use the same provided schema.
// Buckets in spansB/bucketsB with an absolute upper limit ≤ threshold are ignored.
// If negative is true, the buckets in spansB/bucketsB are subtracted rather than added.
func addBuckets(
schema int32, threshold float64, negative bool,
spansA []Span, bucketsA []float64,
spansB []Span, bucketsB []float64,
) ([]Span, []float64) {
var (
iSpan = -1
iBucket = -1
iInSpan int32
indexA int32
indexB int32
bIdxB int
bucketB float64
deltaIndex int32
lowerThanThreshold = true
)
for _, spanB := range spansB {
indexB += spanB.Offset
for j := 0; j < int(spanB.Length); j++ {
if lowerThanThreshold && getBound(indexB, schema) <= threshold {
goto nextLoop
}
lowerThanThreshold = false
bucketB = bucketsB[bIdxB]
if negative {
bucketB *= -1
}
if iSpan == -1 {
if len(spansA) == 0 || spansA[0].Offset > indexB {
// Add bucket before all others.
bucketsA = append(bucketsA, 0)
copy(bucketsA[1:], bucketsA)
bucketsA[0] = bucketB
if len(spansA) > 0 && spansA[0].Offset == indexB+1 {
spansA[0].Length++
spansA[0].Offset--
goto nextLoop
}
spansA = append(spansA, Span{})
copy(spansA[1:], spansA)
spansA[0] = Span{Offset: indexB, Length: 1}
if len(spansA) > 1 {
// Convert the absolute offset in the formerly
// first span to a relative offset.
spansA[1].Offset -= indexB + 1
}
goto nextLoop
} else if spansA[0].Offset == indexB {
// Just add to first bucket.
bucketsA[0] += bucketB
goto nextLoop
}
iSpan, iBucket, iInSpan = 0, 0, 0
indexA = spansA[0].Offset
}
deltaIndex = indexB - indexA
for {
remainingInSpan := int32(spansA[iSpan].Length) - iInSpan
if deltaIndex < remainingInSpan {
// Bucket is in current span.
iBucket += int(deltaIndex)
iInSpan += deltaIndex
bucketsA[iBucket] += bucketB
break
}
deltaIndex -= remainingInSpan
iBucket += int(remainingInSpan)
iSpan++
if iSpan == len(spansA) || deltaIndex < spansA[iSpan].Offset {
// Bucket is in gap behind previous span (or there are no further spans).
bucketsA = append(bucketsA, 0)
copy(bucketsA[iBucket+1:], bucketsA[iBucket:])
bucketsA[iBucket] = bucketB
switch {
case deltaIndex == 0:
// Directly after previous span, extend previous span.
if iSpan < len(spansA) {
spansA[iSpan].Offset--
}
iSpan--
iInSpan = int32(spansA[iSpan].Length)
spansA[iSpan].Length++
goto nextLoop
case iSpan < len(spansA) && deltaIndex == spansA[iSpan].Offset-1:
// Directly before next span, extend next span.
iInSpan = 0
spansA[iSpan].Offset--
spansA[iSpan].Length++
goto nextLoop
default:
// No next span, or next span is not directly adjacent to new bucket.
// Add new span.
iInSpan = 0
if iSpan < len(spansA) {
spansA[iSpan].Offset -= deltaIndex + 1
}
spansA = append(spansA, Span{})
copy(spansA[iSpan+1:], spansA[iSpan:])
spansA[iSpan] = Span{Length: 1, Offset: deltaIndex}
goto nextLoop
}
} else {
// Try start of next span.
deltaIndex -= spansA[iSpan].Offset
iInSpan = 0
}
}
nextLoop:
indexA = indexB
indexB++
bIdxB++
}
}
return spansA, bucketsA
}
func floatBucketsMatch(b1, b2 []float64) bool {
if len(b1) != len(b2) {
return false
}
for i, b := range b1 {
if math.Float64bits(b) != math.Float64bits(b2[i]) {
return false
}
}
return true
}
// ReduceResolution reduces the float histogram's spans, buckets into target schema.
// The target schema must be smaller than the current float histogram's schema.
func (h *FloatHistogram) ReduceResolution(targetSchema int32) *FloatHistogram {
if targetSchema >= h.Schema {
panic(fmt.Errorf("cannot reduce resolution from schema %d to %d", h.Schema, targetSchema))
}
h.PositiveSpans, h.PositiveBuckets = reduceResolution(h.PositiveSpans, h.PositiveBuckets, h.Schema, targetSchema, false, true)
h.NegativeSpans, h.NegativeBuckets = reduceResolution(h.NegativeSpans, h.NegativeBuckets, h.Schema, targetSchema, false, true)
h.Schema = targetSchema
return h
}