prometheus/wal/wal.go
Fabian Reinartz d951140ab8 wal: avoid heap allocation in WAL reader
The buffers we allocated were escaping to the heap, resulting in large
memory usage spikes during startup and checkpointing in Prometheus.
This attaches the buffer to the reader object to prevent this.

Signed-off-by: Fabian Reinartz <freinartz@google.com>
2018-07-19 07:25:30 -04:00

830 lines
21 KiB
Go

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package wal
import (
"bufio"
"encoding/binary"
"fmt"
"hash/crc32"
"io"
"math"
"os"
"path/filepath"
"strconv"
"sync"
"time"
"github.com/go-kit/kit/log"
"github.com/go-kit/kit/log/level"
"github.com/pkg/errors"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/tsdb/fileutil"
)
const (
version = 1
defaultSegmentSize = 128 * 1024 * 1024 // 128 MB
maxRecordSize = 1 * 1024 * 1024 // 1MB
pageSize = 32 * 1024 // 32KB
recordHeaderSize = 7
)
// The table gets initialized with sync.Once but may still cause a race
// with any other use of the crc32 package anywhere. Thus we initialize it
// before.
var castagnoliTable = crc32.MakeTable(crc32.Castagnoli)
type page struct {
alloc int
flushed int
buf [pageSize]byte
}
func (p *page) remaining() int {
return pageSize - p.alloc
}
func (p *page) full() bool {
return pageSize-p.alloc < recordHeaderSize
}
// Segment represents a segment file.
type Segment struct {
*os.File
dir string
i int
}
// Index returns the index of the segment.
func (s *Segment) Index() int {
return s.i
}
// Dir returns the directory of the segment.
func (s *Segment) Dir() string {
return s.dir
}
// CorruptionErr is an error that's returned when corruption is encountered.
type CorruptionErr struct {
Segment int
Offset int
Err error
}
func (e *CorruptionErr) Error() string {
if e.Segment < 0 {
return fmt.Sprintf("corruption after %d bytes: %s", e.Offset, e.Err)
}
return fmt.Sprintf("corruption in segment %d at %d: %s", e.Segment, e.Offset, e.Err)
}
// OpenWriteSegment opens segment k in dir. The returned segment is ready for new appends.
func OpenWriteSegment(dir string, k int) (*Segment, error) {
// Only .active segments are allowed to be opened for write.
f, err := os.OpenFile(SegmentName(dir, k), os.O_WRONLY|os.O_APPEND, 0666)
if err != nil {
return nil, err
}
stat, err := f.Stat()
if err != nil {
f.Close()
return nil, err
}
// If the last page is torn, fill it with zeros.
// In case it was torn after all records were written successfully, this
// will just pad the page and everything will be fine.
// If it was torn mid-record, a full read (which the caller should do anyway
// to ensure integrity) will detect it as a corruption by the end.
if d := stat.Size() % pageSize; d != 0 {
if _, err := f.Write(make([]byte, pageSize-d)); err != nil {
f.Close()
return nil, errors.Wrap(err, "zero-pad torn page")
}
}
return &Segment{File: f, i: k, dir: dir}, nil
}
// CreateSegment creates a new segment k in dir.
func CreateSegment(dir string, k int) (*Segment, error) {
f, err := os.OpenFile(SegmentName(dir, k), os.O_WRONLY|os.O_CREATE|os.O_APPEND, 0666)
if err != nil {
return nil, err
}
return &Segment{File: f, i: k, dir: dir}, nil
}
// OpenReadSegment opens the segment k in dir for reading.
func OpenReadSegment(fn string) (*Segment, error) {
k, err := strconv.Atoi(filepath.Base(fn))
if err != nil {
return nil, errors.New("not a valid filename")
}
f, err := os.Open(fn)
if err != nil {
return nil, err
}
return &Segment{File: f, i: k, dir: filepath.Dir(fn)}, nil
}
// WAL is a write ahead log that stores records in segment files.
// It must be read from start to end once before logging new data.
// If an errore occurs during read, the repair procedure must be called
// before it's safe to do further writes.
//
// Segments are written to in pages of 32KB, with records possibly split
// across page boundaries.
// Records are never split across segments to allow full segments to be
// safely truncated. It also ensures that torn writes never corrupt records
// beyond the most recent segment.
type WAL struct {
dir string
logger log.Logger
segmentSize int
mtx sync.RWMutex
segment *Segment // active segment
donePages int // pages written to the segment
page *page // active page
stopc chan chan struct{}
actorc chan func()
fsyncDuration prometheus.Summary
pageFlushes prometheus.Counter
pageCompletions prometheus.Counter
}
// New returns a new WAL over the given directory.
func New(logger log.Logger, reg prometheus.Registerer, dir string) (*WAL, error) {
return NewSize(logger, reg, dir, defaultSegmentSize)
}
// NewSize returns a new WAL over the given directory.
// New segments are created with the specified size.
func NewSize(logger log.Logger, reg prometheus.Registerer, dir string, segmentSize int) (*WAL, error) {
if segmentSize%pageSize != 0 {
return nil, errors.New("invalid segment size")
}
if err := os.MkdirAll(dir, 0777); err != nil {
return nil, errors.Wrap(err, "create dir")
}
if logger == nil {
logger = log.NewNopLogger()
}
w := &WAL{
dir: dir,
logger: logger,
segmentSize: segmentSize,
page: &page{},
actorc: make(chan func(), 100),
stopc: make(chan chan struct{}),
}
w.fsyncDuration = prometheus.NewSummary(prometheus.SummaryOpts{
Name: "prometheus_tsdb_wal_fsync_duration_seconds",
Help: "Duration of WAL fsync.",
})
w.pageFlushes = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_wal_page_flushes_total",
Help: "Total number of page flushes.",
})
w.pageCompletions = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_wal_completed_pages_total",
Help: "Total number of completed pages.",
})
if reg != nil {
reg.MustRegister(w.fsyncDuration, w.pageFlushes, w.pageCompletions)
}
_, j, err := w.Segments()
if err != nil {
return nil, errors.Wrap(err, "get segment range")
}
// Fresh dir, no segments yet.
if j == -1 {
if w.segment, err = CreateSegment(w.dir, 0); err != nil {
return nil, err
}
} else {
if w.segment, err = OpenWriteSegment(w.dir, j); err != nil {
return nil, err
}
// Correctly initialize donePages.
stat, err := w.segment.Stat()
if err != nil {
return nil, err
}
w.donePages = int(stat.Size() / pageSize)
}
go w.run()
return w, nil
}
// Dir returns the directory of the WAL.
func (w *WAL) Dir() string {
return w.dir
}
func (w *WAL) run() {
Loop:
for {
select {
case f := <-w.actorc:
f()
case donec := <-w.stopc:
defer close(donec)
break Loop
}
}
// Drain and process any remaining functions.
for {
select {
case f := <-w.actorc:
f()
default:
return
}
}
}
// Repair attempts to repair the WAL based on the error.
// It discards all data behind the corruption
func (w *WAL) Repair(err error) error {
// We could probably have a mode that only discards torn records right around
// the corruption to preserve as data much as possible.
// But that's not generally applicable if the records have any kind of causality.
// Maybe as an extra mode in the future if mid-WAL corruptions become
// a frequent concern.
cerr, ok := err.(*CorruptionErr)
if !ok {
return errors.New("cannot handle error")
}
if cerr.Segment < 0 {
return errors.New("corruption error does not specify position")
}
level.Warn(w.logger).Log("msg", "starting corruption repair",
"segment", cerr.Segment, "offset", cerr.Offset)
// All segments behind the corruption can no longer be used.
segs, err := listSegments(w.dir)
if err != nil {
return errors.Wrap(err, "list segments")
}
level.Warn(w.logger).Log("msg", "deleting all segments behind corruption")
for _, s := range segs {
if s.n <= cerr.Segment {
continue
}
if err := os.Remove(filepath.Join(w.dir, s.s)); err != nil {
return errors.Wrap(err, "delete segment")
}
}
// Regardless of the corruption offset, no record reaches into the previous segment.
// So we can safely repair the WAL by removing the segment and re-inserting all
// its records up to the corruption.
level.Warn(w.logger).Log("msg", "rewrite corrupted segment")
fn := SegmentName(w.dir, cerr.Segment)
tmpfn := fn + ".repair"
if err := fileutil.Rename(fn, tmpfn); err != nil {
return err
}
// Create a clean segment and make it the active one.
s, err := CreateSegment(w.dir, cerr.Segment)
if err != nil {
return err
}
w.segment = s
f, err := os.Open(tmpfn)
if err != nil {
return errors.Wrap(err, "open segment")
}
defer f.Close()
r := NewReader(bufio.NewReader(f))
for r.Next() {
if err := w.Log(r.Record()); err != nil {
return errors.Wrap(err, "insert record")
}
}
// We expect an error here, so nothing to handle.
if err := os.Remove(tmpfn); err != nil {
return errors.Wrap(err, "delete corrupted segment")
}
return nil
}
// SegmentName builds a segment name for the directory.
func SegmentName(dir string, i int) string {
return filepath.Join(dir, fmt.Sprintf("%06d", i))
}
// nextSegment creates the next segment and closes the previous one.
func (w *WAL) nextSegment() error {
// Only flush the current page if it actually holds data.
if w.page.alloc > 0 {
if err := w.flushPage(true); err != nil {
return err
}
}
next, err := CreateSegment(w.dir, w.segment.Index()+1)
if err != nil {
return errors.Wrap(err, "create new segment file")
}
prev := w.segment
w.segment = next
w.donePages = 0
// Don't block further writes by fsyncing the last segment.
w.actorc <- func() {
if err := w.fsync(prev); err != nil {
level.Error(w.logger).Log("msg", "sync previous segment", "err", err)
}
if err := prev.Close(); err != nil {
level.Error(w.logger).Log("msg", "close previous segment", "err", err)
}
}
return nil
}
// flushPage writes the new contents of the page to disk. If no more records will fit into
// the page, the remaining bytes will be set to zero and a new page will be started.
// If clear is true, this is enforced regardless of how many bytes are left in the page.
func (w *WAL) flushPage(clear bool) error {
w.pageFlushes.Inc()
p := w.page
clear = clear || p.full()
// No more data will fit into the page. Enqueue and clear it.
if clear {
p.alloc = pageSize // write till end of page
w.pageCompletions.Inc()
}
n, err := w.segment.Write(p.buf[p.flushed:p.alloc])
if err != nil {
return err
}
p.flushed += n
if clear {
for i := range p.buf {
p.buf[i] = 0
}
p.alloc = 0
p.flushed = 0
w.donePages++
}
return nil
}
type recType uint8
const (
recPageTerm recType = 0 // rest of page is empty
recFull recType = 1 // full record
recFirst recType = 2 // first fragment of a record
recMiddle recType = 3 // middle fragments of a record
recLast recType = 4 // final fragment of a record
)
func (t recType) String() string {
switch t {
case recPageTerm:
return "zero"
case recFull:
return "full"
case recFirst:
return "first"
case recMiddle:
return "middle"
case recLast:
return "last"
default:
return "<invalid>"
}
}
func (w *WAL) pagesPerSegment() int {
return w.segmentSize / pageSize
}
// Log writes the records into the log.
// Multiple records can be passed at once to reduce writes and increase throughput.
func (w *WAL) Log(recs ...[]byte) error {
// Callers could just implement their own list record format but adding
// a bit of extra logic here frees them from that overhead.
for i, r := range recs {
if err := w.log(r, i == len(recs)-1); err != nil {
return err
}
}
return nil
}
// log writes rec to the log and forces a flush of the current page if its
// the final record of a batch.
func (w *WAL) log(rec []byte, final bool) error {
w.mtx.Lock()
defer w.mtx.Unlock()
// If the record is too big to fit within pages in the current
// segment, terminate the active segment and advance to the next one.
// This ensures that records do not cross segment boundaries.
left := w.page.remaining() - recordHeaderSize // active page
left += (pageSize - recordHeaderSize) * (w.pagesPerSegment() - w.donePages - 1) // free pages
if len(rec) > left {
if err := w.nextSegment(); err != nil {
return err
}
}
// Populate as many pages as necessary to fit the record.
// Be careful to always do one pass to ensure we write zero-length records.
for i := 0; i == 0 || len(rec) > 0; i++ {
p := w.page
// Find how much of the record we can fit into the page.
var (
l = min(len(rec), (pageSize-p.alloc)-recordHeaderSize)
part = rec[:l]
buf = p.buf[p.alloc:]
typ recType
)
switch {
case i == 0 && len(part) == len(rec):
typ = recFull
case len(part) == len(rec):
typ = recLast
case i == 0:
typ = recFirst
default:
typ = recMiddle
}
buf[0] = byte(typ)
crc := crc32.Checksum(part, castagnoliTable)
binary.BigEndian.PutUint16(buf[1:], uint16(len(part)))
binary.BigEndian.PutUint32(buf[3:], crc)
copy(buf[7:], part)
p.alloc += len(part) + recordHeaderSize
// If we wrote a full record, we can fit more records of the batch
// into the page before flushing it.
if final || typ != recFull || w.page.full() {
if err := w.flushPage(false); err != nil {
return err
}
}
rec = rec[l:]
}
return nil
}
// Segments returns the range [m, n] of currently existing segments.
// If no segments are found, m and n are -1.
func (w *WAL) Segments() (m, n int, err error) {
refs, err := listSegments(w.dir)
if err != nil {
return 0, 0, err
}
if len(refs) == 0 {
return -1, -1, nil
}
return refs[0].n, refs[len(refs)-1].n, nil
}
// Truncate drops all segments before i.
func (w *WAL) Truncate(i int) error {
refs, err := listSegments(w.dir)
if err != nil {
return err
}
for _, r := range refs {
if r.n >= i {
break
}
if err := os.Remove(filepath.Join(w.dir, r.s)); err != nil {
return err
}
}
return nil
}
func (w *WAL) fsync(f *Segment) error {
start := time.Now()
err := fileutil.Fsync(f.File)
w.fsyncDuration.Observe(time.Since(start).Seconds())
return err
}
// Close flushes all writes and closes active segment.
func (w *WAL) Close() (err error) {
w.mtx.Lock()
defer w.mtx.Unlock()
// Flush the last page and zero out all its remaining size.
// We must not flush an empty page as it would falsely signal
// the segment is done if we start writing to it again after opening.
if w.page.alloc > 0 {
if err := w.flushPage(true); err != nil {
return err
}
}
donec := make(chan struct{})
w.stopc <- donec
<-donec
if err = w.fsync(w.segment); err != nil {
level.Error(w.logger).Log("msg", "sync previous segment", "err", err)
}
if err := w.segment.Close(); err != nil {
level.Error(w.logger).Log("msg", "close previous segment", "err", err)
}
return nil
}
type segmentRef struct {
s string
n int
}
func listSegments(dir string) (refs []segmentRef, err error) {
files, err := fileutil.ReadDir(dir)
if err != nil {
return nil, err
}
var last int
for _, fn := range files {
k, err := strconv.Atoi(fn)
if err != nil {
continue
}
if len(refs) > 0 && k > last+1 {
return nil, errors.New("segments are not sequential")
}
refs = append(refs, segmentRef{s: fn, n: k})
last = k
}
return refs, nil
}
// NewSegmentsReader returns a new reader over all segments in the directory.
func NewSegmentsReader(dir string) (io.ReadCloser, error) {
return NewSegmentsRangeReader(dir, 0, math.MaxInt64)
}
// NewSegmentsRangeReader returns a new reader over the given WAL segment range.
// If m or n are -1, the range is open on the respective end.
func NewSegmentsRangeReader(dir string, m, n int) (io.ReadCloser, error) {
refs, err := listSegments(dir)
if err != nil {
return nil, err
}
var segs []*Segment
for _, r := range refs {
if m >= 0 && r.n < m {
continue
}
if n >= 0 && r.n > n {
break
}
s, err := OpenReadSegment(filepath.Join(dir, r.s))
if err != nil {
return nil, err
}
segs = append(segs, s)
}
return newSegmentBufReader(segs...), nil
}
// segmentBufReader is a buffered reader that reads in multiples of pages.
// The main purpose is that we are able to track segment and offset for
// corruption reporting.
type segmentBufReader struct {
buf *bufio.Reader
segs []*Segment
cur int
off int
more bool
}
func newSegmentBufReader(segs ...*Segment) *segmentBufReader {
return &segmentBufReader{
buf: bufio.NewReaderSize(nil, 16*pageSize),
segs: segs,
cur: -1,
}
}
func (r *segmentBufReader) Close() (err error) {
for _, s := range r.segs {
if e := s.Close(); e != nil {
err = e
}
}
return err
}
func (r *segmentBufReader) Read(b []byte) (n int, err error) {
if !r.more {
if r.cur+1 >= len(r.segs) {
return 0, io.EOF
}
r.cur++
r.off = 0
r.more = true
r.buf.Reset(r.segs[r.cur])
}
n, err = r.buf.Read(b)
r.off += n
if err != io.EOF {
return n, err
}
// Just return what we read so far, but don't signal EOF.
// Only unset more so we don't invalidate the current segment and
// offset before the next read.
r.more = false
// If no more segments are left, it's the end for the reader.
if len(r.segs) == 0 {
return n, io.EOF
}
return n, nil
}
// Reader reads WAL records from an io.Reader.
type Reader struct {
rdr io.Reader
err error
rec []byte
buf [pageSize]byte
total int // total bytes processed.
}
// NewReader returns a new reader.
func NewReader(r io.Reader) *Reader {
return &Reader{rdr: r}
}
// Next advances the reader to the next records and returns true if it exists.
// It must not be called once after it returned false.
func (r *Reader) Next() bool {
err := r.next()
if errors.Cause(err) == io.EOF {
return false
}
r.err = err
return r.err == nil
}
func (r *Reader) next() (err error) {
// We have to use r.buf since allocating byte arrays here fails escape
// analysis and ends up on the heap, even though it seemingly should not.
hdr := r.buf[:7]
buf := r.buf[7:]
r.rec = r.rec[:0]
i := 0
for {
if _, err = io.ReadFull(r.rdr, hdr[:1]); err != nil {
return errors.Wrap(err, "read first header byte")
}
r.total++
typ := recType(hdr[0])
// Gobble up zero bytes.
if typ == recPageTerm {
// We are pedantic and check whether the zeros are actually up
// to a page boundary.
// It's not strictly necessary but may catch sketchy state early.
k := pageSize - (r.total % pageSize)
if k == pageSize {
continue // initial 0 byte was last page byte
}
n, err := io.ReadFull(r.rdr, buf[:k])
if err != nil {
return errors.Wrap(err, "read remaining zeros")
}
r.total += n
for _, c := range buf[:k] {
if c != 0 {
return errors.New("unexpected non-zero byte in padded page")
}
}
continue
}
n, err := io.ReadFull(r.rdr, hdr[1:])
if err != nil {
return errors.Wrap(err, "read remaining header")
}
r.total += n
var (
length = binary.BigEndian.Uint16(hdr[1:])
crc = binary.BigEndian.Uint32(hdr[3:])
)
if length > pageSize-recordHeaderSize {
return errors.Errorf("invalid record size %d", length)
}
n, err = io.ReadFull(r.rdr, buf[:length])
if err != nil {
return err
}
r.total += n
if n != int(length) {
return errors.Errorf("invalid size: expected %d, got %d", length, n)
}
if c := crc32.Checksum(buf[:length], castagnoliTable); c != crc {
return errors.Errorf("unexpected checksum %x, expected %x", c, crc)
}
r.rec = append(r.rec, buf[:length]...)
switch typ {
case recFull:
if i != 0 {
return errors.New("unexpected full record")
}
return nil
case recFirst:
if i != 0 {
return errors.New("unexpected first record")
}
case recMiddle:
if i == 0 {
return errors.New("unexpected middle record")
}
case recLast:
if i == 0 {
return errors.New("unexpected last record")
}
return nil
default:
return errors.Errorf("unexpected record type %d", typ)
}
// Only increment i for non-zero records since we use it
// to determine valid content record sequences.
i++
}
}
// Err returns the last encountered error wrapped in a corruption error.
// If the reader does not allow to infer a segment index and offset, a total
// offset in the reader stream will be provided.
func (r *Reader) Err() error {
if r.err == nil {
return nil
}
if b, ok := r.rdr.(*segmentBufReader); ok {
return &CorruptionErr{
Err: r.err,
Segment: b.segs[b.cur].Index(),
Offset: b.off,
}
}
return &CorruptionErr{
Err: r.err,
Segment: -1,
Offset: r.total,
}
}
// Record returns the current record. The returned byte slice is only
// valid until the next call to Next.
func (r *Reader) Record() []byte {
return r.rec
}
func min(i, j int) int {
if i < j {
return i
}
return j
}