prometheus/storage/fanout.go
Annanay 7f98a744e5 Add context to Appender interface
Signed-off-by: Annanay <annanayagarwal@gmail.com>
2020-07-24 19:40:51 +05:30

874 lines
24 KiB
Go

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package storage
import (
"bytes"
"container/heap"
"context"
"sort"
"strings"
"sync"
"github.com/go-kit/kit/log"
"github.com/go-kit/kit/log/level"
"github.com/pkg/errors"
"github.com/prometheus/common/model"
"github.com/prometheus/prometheus/pkg/labels"
"github.com/prometheus/prometheus/tsdb/chunkenc"
"github.com/prometheus/prometheus/tsdb/chunks"
tsdb_errors "github.com/prometheus/prometheus/tsdb/errors"
)
type fanout struct {
logger log.Logger
primary Storage
secondaries []Storage
}
// NewFanout returns a new fanout Storage, which proxies reads and writes
// through to multiple underlying storages.
//
// The difference between primary and secondary Storage is only for read (Querier) path and it goes as follows:
// * If the primary querier returns an error, then any of the Querier operations will fail.
// * If any secondary querier returns an error the result from that queries is discarded. The overall operation will succeed,
// and the error from the secondary querier will be returned as a warning.
//
// NOTE: In the case of Prometheus, it treats all remote storages as secondary / best effort.
func NewFanout(logger log.Logger, primary Storage, secondaries ...Storage) Storage {
return &fanout{
logger: logger,
primary: primary,
secondaries: secondaries,
}
}
// StartTime implements the Storage interface.
func (f *fanout) StartTime() (int64, error) {
// StartTime of a fanout should be the earliest StartTime of all its storages,
// both primary and secondaries.
firstTime, err := f.primary.StartTime()
if err != nil {
return int64(model.Latest), err
}
for _, s := range f.secondaries {
t, err := s.StartTime()
if err != nil {
return int64(model.Latest), err
}
if t < firstTime {
firstTime = t
}
}
return firstTime, nil
}
func (f *fanout) Querier(ctx context.Context, mint, maxt int64) (Querier, error) {
primary, err := f.primary.Querier(ctx, mint, maxt)
if err != nil {
return nil, err
}
secondaries := make([]Querier, 0, len(f.secondaries))
for _, storage := range f.secondaries {
querier, err := storage.Querier(ctx, mint, maxt)
if err != nil {
// Close already open Queriers, append potential errors to returned error.
errs := tsdb_errors.MultiError{err}
errs.Add(primary.Close())
for _, q := range secondaries {
errs.Add(q.Close())
}
return nil, errs.Err()
}
secondaries = append(secondaries, querier)
}
return NewMergeQuerier(primary, secondaries, ChainedSeriesMerge), nil
}
func (f *fanout) ChunkQuerier(ctx context.Context, mint, maxt int64) (ChunkQuerier, error) {
primary, err := f.primary.ChunkQuerier(ctx, mint, maxt)
if err != nil {
return nil, err
}
secondaries := make([]ChunkQuerier, 0, len(f.secondaries))
for _, storage := range f.secondaries {
querier, err := storage.ChunkQuerier(ctx, mint, maxt)
if err != nil {
// Close already open Queriers, append potential errors to returned error.
errs := tsdb_errors.MultiError{err}
errs.Add(primary.Close())
for _, q := range secondaries {
errs.Add(q.Close())
}
return nil, errs.Err()
}
secondaries = append(secondaries, querier)
}
return NewMergeChunkQuerier(primary, secondaries, NewCompactingChunkSeriesMerger(ChainedSeriesMerge)), nil
}
func (f *fanout) Appender(ctx context.Context) Appender {
primary := f.primary.Appender(ctx)
secondaries := make([]Appender, 0, len(f.secondaries))
for _, storage := range f.secondaries {
secondaries = append(secondaries, storage.Appender(ctx))
}
return &fanoutAppender{
logger: f.logger,
primary: primary,
secondaries: secondaries,
}
}
// Close closes the storage and all its underlying resources.
func (f *fanout) Close() error {
errs := tsdb_errors.MultiError{}
errs.Add(f.primary.Close())
for _, s := range f.secondaries {
errs.Add(s.Close())
}
return errs.Err()
}
// fanoutAppender implements Appender.
type fanoutAppender struct {
logger log.Logger
primary Appender
secondaries []Appender
}
func (f *fanoutAppender) Add(l labels.Labels, t int64, v float64) (uint64, error) {
ref, err := f.primary.Add(l, t, v)
if err != nil {
return ref, err
}
for _, appender := range f.secondaries {
if _, err := appender.Add(l, t, v); err != nil {
return 0, err
}
}
return ref, nil
}
func (f *fanoutAppender) AddFast(ref uint64, t int64, v float64) error {
if err := f.primary.AddFast(ref, t, v); err != nil {
return err
}
for _, appender := range f.secondaries {
if err := appender.AddFast(ref, t, v); err != nil {
return err
}
}
return nil
}
func (f *fanoutAppender) Commit() (err error) {
err = f.primary.Commit()
for _, appender := range f.secondaries {
if err == nil {
err = appender.Commit()
} else {
if rollbackErr := appender.Rollback(); rollbackErr != nil {
level.Error(f.logger).Log("msg", "Squashed rollback error on commit", "err", rollbackErr)
}
}
}
return
}
func (f *fanoutAppender) Rollback() (err error) {
err = f.primary.Rollback()
for _, appender := range f.secondaries {
rollbackErr := appender.Rollback()
if err == nil {
err = rollbackErr
} else if rollbackErr != nil {
level.Error(f.logger).Log("msg", "Squashed rollback error on rollback", "err", rollbackErr)
}
}
return nil
}
type mergeGenericQuerier struct {
queriers []genericQuerier
// mergeFn is used when we see series from different queriers Selects with the same labels.
mergeFn genericSeriesMergeFunc
}
// NewMergeQuerier returns a new Querier that merges results of given primary and slice of secondary queriers.
// See NewFanout commentary to learn more about primary vs secondary differences.
//
// In case of overlaps between the data given by primary + secondaries Selects, merge function will be used.
func NewMergeQuerier(primary Querier, secondaries []Querier, mergeFn VerticalSeriesMergeFunc) Querier {
queriers := make([]genericQuerier, 0, len(secondaries)+1)
if primary != nil {
queriers = append(queriers, newGenericQuerierFrom(primary))
}
for _, querier := range secondaries {
if _, ok := querier.(noopQuerier); !ok && querier != nil {
queriers = append(queriers, newSecondaryQuerierFrom(querier))
}
}
return &querierAdapter{&mergeGenericQuerier{
mergeFn: (&seriesMergerAdapter{VerticalSeriesMergeFunc: mergeFn}).Merge,
queriers: queriers,
}}
}
// NewMergeChunkQuerier returns a new ChunkQuerier that merges results of given primary and slice of secondary chunk queriers.
// See NewFanout commentary to learn more about primary vs secondary differences.
//
// In case of overlaps between the data given by primary + secondaries Selects, merge function will be used.
// TODO(bwplotka): Currently merge will compact overlapping chunks with bigger chunk, without limit. Split it: https://github.com/prometheus/tsdb/issues/670
func NewMergeChunkQuerier(primary ChunkQuerier, secondaries []ChunkQuerier, mergeFn VerticalChunkSeriesMergeFunc) ChunkQuerier {
queriers := make([]genericQuerier, 0, len(secondaries)+1)
if primary != nil {
queriers = append(queriers, newGenericQuerierFromChunk(primary))
}
for _, querier := range secondaries {
if _, ok := querier.(noopChunkQuerier); !ok && querier != nil {
queriers = append(queriers, newSecondaryQuerierFromChunk(querier))
}
}
return &chunkQuerierAdapter{&mergeGenericQuerier{
mergeFn: (&chunkSeriesMergerAdapter{VerticalChunkSeriesMergeFunc: mergeFn}).Merge,
queriers: queriers,
}}
}
// Select returns a set of series that matches the given label matchers.
func (q *mergeGenericQuerier) Select(sortSeries bool, hints *SelectHints, matchers ...*labels.Matcher) genericSeriesSet {
if len(q.queriers) == 1 {
return q.queriers[0].Select(sortSeries, hints, matchers...)
}
var (
seriesSets = make([]genericSeriesSet, 0, len(q.queriers))
wg sync.WaitGroup
seriesSetChan = make(chan genericSeriesSet)
)
// Schedule all Selects for all queriers we know about.
for _, querier := range q.queriers {
wg.Add(1)
go func(qr genericQuerier) {
defer wg.Done()
// We need to sort for NewMergeSeriesSet to work.
seriesSetChan <- qr.Select(true, hints, matchers...)
}(querier)
}
go func() {
wg.Wait()
close(seriesSetChan)
}()
for r := range seriesSetChan {
seriesSets = append(seriesSets, r)
}
return &lazySeriesSet{create: create(seriesSets, q.mergeFn)}
}
func create(seriesSets []genericSeriesSet, mergeFunc genericSeriesMergeFunc) func() (genericSeriesSet, bool) {
// Returned function gets called with the first call to Next().
return func() (genericSeriesSet, bool) {
if len(seriesSets) == 1 {
return seriesSets[0], seriesSets[0].Next()
}
var h genericSeriesSetHeap
for _, set := range seriesSets {
if set == nil {
continue
}
if set.Next() {
heap.Push(&h, set)
continue
}
// When primary fails ignore results from secondaries.
// Only the primary querier returns error.
if err := set.Err(); err != nil {
return errorOnlySeriesSet{err}, false
}
}
set := &genericMergeSeriesSet{
mergeFunc: mergeFunc,
sets: seriesSets,
heap: h,
}
return set, set.Next()
}
}
// LabelValues returns all potential values for a label name.
func (q *mergeGenericQuerier) LabelValues(name string) ([]string, Warnings, error) {
var (
results [][]string
warnings Warnings
)
for _, querier := range q.queriers {
values, wrn, err := querier.LabelValues(name)
if wrn != nil {
// TODO(bwplotka): We could potentially wrap warnings.
warnings = append(warnings, wrn...)
}
if err != nil {
return nil, nil, errors.Wrapf(err, "LabelValues() from Querier for label %s", name)
}
results = append(results, values)
}
return mergeStringSlices(results), warnings, nil
}
func mergeStringSlices(ss [][]string) []string {
switch len(ss) {
case 0:
return nil
case 1:
return ss[0]
case 2:
return mergeTwoStringSlices(ss[0], ss[1])
default:
halfway := len(ss) / 2
return mergeTwoStringSlices(
mergeStringSlices(ss[:halfway]),
mergeStringSlices(ss[halfway:]),
)
}
}
func mergeTwoStringSlices(a, b []string) []string {
i, j := 0, 0
result := make([]string, 0, len(a)+len(b))
for i < len(a) && j < len(b) {
switch strings.Compare(a[i], b[j]) {
case 0:
result = append(result, a[i])
i++
j++
case -1:
result = append(result, a[i])
i++
case 1:
result = append(result, b[j])
j++
}
}
result = append(result, a[i:]...)
result = append(result, b[j:]...)
return result
}
// LabelNames returns all the unique label names present in the block in sorted order.
func (q *mergeGenericQuerier) LabelNames() ([]string, Warnings, error) {
var (
labelNamesMap = make(map[string]struct{})
warnings Warnings
)
for _, querier := range q.queriers {
names, wrn, err := querier.LabelNames()
if wrn != nil {
// TODO(bwplotka): We could potentially wrap warnings.
warnings = append(warnings, wrn...)
}
if err != nil {
return nil, nil, errors.Wrap(err, "LabelNames() from Querier")
}
for _, name := range names {
labelNamesMap[name] = struct{}{}
}
}
if len(labelNamesMap) == 0 {
return nil, warnings, nil
}
labelNames := make([]string, 0, len(labelNamesMap))
for name := range labelNamesMap {
labelNames = append(labelNames, name)
}
sort.Strings(labelNames)
return labelNames, warnings, nil
}
// Close releases the resources of the Querier.
func (q *mergeGenericQuerier) Close() error {
errs := tsdb_errors.MultiError{}
for _, querier := range q.queriers {
if err := querier.Close(); err != nil {
errs.Add(err)
}
}
return errs.Err()
}
// VerticalSeriesMergeFunc returns merged series implementation that merges series with same labels together.
// It has to handle time-overlapped series as well.
type VerticalSeriesMergeFunc func(...Series) Series
// NewMergeSeriesSet returns a new SeriesSet that merges many SeriesSets together.
func NewMergeSeriesSet(sets []SeriesSet, mergeFunc VerticalSeriesMergeFunc) SeriesSet {
genericSets := make([]genericSeriesSet, 0, len(sets))
for _, s := range sets {
genericSets = append(genericSets, &genericSeriesSetAdapter{s})
}
return &seriesSetAdapter{newGenericMergeSeriesSet(genericSets, (&seriesMergerAdapter{VerticalSeriesMergeFunc: mergeFunc}).Merge)}
}
// VerticalChunkSeriesMergeFunc returns merged chunk series implementation that merges potentially time-overlapping
// chunk series with the same labels into single ChunkSeries.
//
// NOTE: It's up to implementation how series are vertically merged (if chunks are sorted, re-encoded etc).
type VerticalChunkSeriesMergeFunc func(...ChunkSeries) ChunkSeries
// NewMergeChunkSeriesSet returns a new ChunkSeriesSet that merges many SeriesSet together.
func NewMergeChunkSeriesSet(sets []ChunkSeriesSet, mergeFunc VerticalChunkSeriesMergeFunc) ChunkSeriesSet {
genericSets := make([]genericSeriesSet, 0, len(sets))
for _, s := range sets {
genericSets = append(genericSets, &genericChunkSeriesSetAdapter{s})
}
return &chunkSeriesSetAdapter{newGenericMergeSeriesSet(genericSets, (&chunkSeriesMergerAdapter{VerticalChunkSeriesMergeFunc: mergeFunc}).Merge)}
}
// genericMergeSeriesSet implements genericSeriesSet.
type genericMergeSeriesSet struct {
currentLabels labels.Labels
mergeFunc genericSeriesMergeFunc
heap genericSeriesSetHeap
sets []genericSeriesSet
currentSets []genericSeriesSet
}
// newGenericMergeSeriesSet returns a new genericSeriesSet that merges (and deduplicates)
// series returned by the series sets when iterating.
// Each series set must return its series in labels order, otherwise
// merged series set will be incorrect.
// Overlapped situations are merged using provided mergeFunc.
func newGenericMergeSeriesSet(sets []genericSeriesSet, mergeFunc genericSeriesMergeFunc) genericSeriesSet {
if len(sets) == 1 {
return sets[0]
}
// We are pre-advancing sets, so we can introspect the label of the
// series under the cursor.
var h genericSeriesSetHeap
for _, set := range sets {
if set == nil {
continue
}
if set.Next() {
heap.Push(&h, set)
}
}
return &genericMergeSeriesSet{
mergeFunc: mergeFunc,
sets: sets,
heap: h,
}
}
func (c *genericMergeSeriesSet) Next() bool {
// Run in a loop because the "next" series sets may not be valid anymore.
// If, for the current label set, all the next series sets come from
// failed remote storage sources, we want to keep trying with the next label set.
for {
// Firstly advance all the current series sets. If any of them have run out
// we can drop them, otherwise they should be inserted back into the heap.
for _, set := range c.currentSets {
if set.Next() {
heap.Push(&c.heap, set)
}
}
if len(c.heap) == 0 {
return false
}
// Now, pop items of the heap that have equal label sets.
c.currentSets = nil
c.currentLabels = c.heap[0].At().Labels()
for len(c.heap) > 0 && labels.Equal(c.currentLabels, c.heap[0].At().Labels()) {
set := heap.Pop(&c.heap).(genericSeriesSet)
c.currentSets = append(c.currentSets, set)
}
// As long as the current set contains at least 1 set,
// then it should return true.
if len(c.currentSets) != 0 {
break
}
}
return true
}
func (c *genericMergeSeriesSet) At() Labels {
if len(c.currentSets) == 1 {
return c.currentSets[0].At()
}
series := make([]Labels, 0, len(c.currentSets))
for _, seriesSet := range c.currentSets {
series = append(series, seriesSet.At())
}
return c.mergeFunc(series...)
}
func (c *genericMergeSeriesSet) Err() error {
for _, set := range c.sets {
if err := set.Err(); err != nil {
return err
}
}
return nil
}
func (c *genericMergeSeriesSet) Warnings() Warnings {
var ws Warnings
for _, set := range c.sets {
ws = append(ws, set.Warnings()...)
}
return ws
}
type genericSeriesSetHeap []genericSeriesSet
func (h genericSeriesSetHeap) Len() int { return len(h) }
func (h genericSeriesSetHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h genericSeriesSetHeap) Less(i, j int) bool {
a, b := h[i].At().Labels(), h[j].At().Labels()
return labels.Compare(a, b) < 0
}
func (h *genericSeriesSetHeap) Push(x interface{}) {
*h = append(*h, x.(genericSeriesSet))
}
func (h *genericSeriesSetHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
// ChainedSeriesMerge returns single series from many same, potentially overlapping series by chaining samples together.
// If one or more samples overlap, one sample from random overlapped ones is kept and all others with the same
// timestamp are dropped.
//
// This works the best with replicated series, where data from two series are exactly the same. This does not work well
// with "almost" the same data, e.g. from 2 Prometheus HA replicas. This is fine, since from the Prometheus perspective
// this never happens.
//
// NOTE: Use this only when you see potentially overlapping series, as this introduces small overhead to handle overlaps
// between series.
func ChainedSeriesMerge(s ...Series) Series {
if len(s) == 0 {
return nil
}
return &chainSeries{
labels: s[0].Labels(),
series: s,
}
}
type chainSeries struct {
labels labels.Labels
series []Series
}
func (m *chainSeries) Labels() labels.Labels {
return m.labels
}
func (m *chainSeries) Iterator() chunkenc.Iterator {
iterators := make([]chunkenc.Iterator, 0, len(m.series))
for _, s := range m.series {
iterators = append(iterators, s.Iterator())
}
return newChainSampleIterator(iterators)
}
// chainSampleIterator is responsible to iterate over samples from different iterators of the same time series in timestamps
// order. If one or more samples overlap, one sample from random overlapped ones is kept and all others with the same
// timestamp are dropped.
type chainSampleIterator struct {
iterators []chunkenc.Iterator
h samplesIteratorHeap
}
func newChainSampleIterator(iterators []chunkenc.Iterator) chunkenc.Iterator {
return &chainSampleIterator{
iterators: iterators,
h: nil,
}
}
func (c *chainSampleIterator) Seek(t int64) bool {
c.h = samplesIteratorHeap{}
for _, iter := range c.iterators {
if iter.Seek(t) {
heap.Push(&c.h, iter)
}
}
return len(c.h) > 0
}
func (c *chainSampleIterator) At() (t int64, v float64) {
if len(c.h) == 0 {
panic("chainSampleIterator.At() called after .Next() returned false.")
}
return c.h[0].At()
}
func (c *chainSampleIterator) Next() bool {
if c.h == nil {
for _, iter := range c.iterators {
if iter.Next() {
heap.Push(&c.h, iter)
}
}
return len(c.h) > 0
}
if len(c.h) == 0 {
return false
}
currt, _ := c.At()
for len(c.h) > 0 {
nextt, _ := c.h[0].At()
// All but one of the overlapping samples will be dropped.
if nextt != currt {
break
}
iter := heap.Pop(&c.h).(chunkenc.Iterator)
if iter.Next() {
heap.Push(&c.h, iter)
}
}
return len(c.h) > 0
}
func (c *chainSampleIterator) Err() error {
var errs tsdb_errors.MultiError
for _, iter := range c.iterators {
if err := iter.Err(); err != nil {
errs.Add(err)
}
}
return errs.Err()
}
type samplesIteratorHeap []chunkenc.Iterator
func (h samplesIteratorHeap) Len() int { return len(h) }
func (h samplesIteratorHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h samplesIteratorHeap) Less(i, j int) bool {
at, _ := h[i].At()
bt, _ := h[j].At()
return at < bt
}
func (h *samplesIteratorHeap) Push(x interface{}) {
*h = append(*h, x.(chunkenc.Iterator))
}
func (h *samplesIteratorHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
type compactChunkSeriesMerger struct {
mergeFunc VerticalSeriesMergeFunc
labels labels.Labels
series []ChunkSeries
}
// NewCompactingChunkSeriesMerger returns VerticalChunkSeriesMergeFunc that merges the same chunk series into single chunk series.
// In case of the chunk overlaps, it compacts those into one or more time-ordered non-overlapping chunks with merged data.
// Samples from overlapped chunks are merged using series vertical merge func.
// It expects the same labels for each given series.
//
// NOTE: Use this only when you see potentially overlapping series, as this introduces small overhead to handle overlaps
// between series.
func NewCompactingChunkSeriesMerger(mergeFunc VerticalSeriesMergeFunc) VerticalChunkSeriesMergeFunc {
return func(s ...ChunkSeries) ChunkSeries {
if len(s) == 0 {
return nil
}
return &compactChunkSeriesMerger{
mergeFunc: mergeFunc,
labels: s[0].Labels(),
series: s,
}
}
}
func (s *compactChunkSeriesMerger) Labels() labels.Labels {
return s.labels
}
func (s *compactChunkSeriesMerger) Iterator() chunks.Iterator {
iterators := make([]chunks.Iterator, 0, len(s.series))
for _, series := range s.series {
iterators = append(iterators, series.Iterator())
}
return &compactChunkIterator{
mergeFunc: s.mergeFunc,
labels: s.labels,
iterators: iterators,
}
}
// compactChunkIterator is responsible to compact chunks from different iterators of the same time series into single chainSeries.
// If time-overlapping chunks are found, they are encoded and passed to series merge and encoded again into one bigger chunk.
// TODO(bwplotka): Currently merge will compact overlapping chunks with bigger chunk, without limit. Split it: https://github.com/prometheus/tsdb/issues/670
type compactChunkIterator struct {
mergeFunc VerticalSeriesMergeFunc
labels labels.Labels
iterators []chunks.Iterator
h chunkIteratorHeap
}
func (c *compactChunkIterator) At() chunks.Meta {
if len(c.h) == 0 {
panic("compactChunkIterator.At() called after .Next() returned false.")
}
return c.h[0].At()
}
func (c *compactChunkIterator) Next() bool {
if c.h == nil {
for _, iter := range c.iterators {
if iter.Next() {
heap.Push(&c.h, iter)
}
}
return len(c.h) > 0
}
if len(c.h) == 0 {
return false
}
// Detect overlaps to compact.
// Be smart about it and deduplicate on the fly if chunks are identical.
last := c.At()
var overlapped []Series
for {
iter := heap.Pop(&c.h).(chunks.Iterator)
if iter.Next() {
heap.Push(&c.h, iter)
}
if len(c.h) == 0 {
break
}
// Get the current oldest chunk by min, then max time.
next := c.At()
if next.MinTime > last.MaxTime {
// No overlap with last one.
break
}
if next.MinTime == last.MinTime &&
next.MaxTime == last.MaxTime &&
bytes.Equal(next.Chunk.Bytes(), last.Chunk.Bytes()) {
// 1:1 duplicates, skip last.
continue
}
overlapped = append(overlapped, &chunkToSeriesDecoder{
labels: c.labels,
Meta: last,
})
last = next
}
if len(overlapped) == 0 {
return len(c.h) > 0
}
// Add last, not yet included overlap.
overlapped = append(overlapped, &chunkToSeriesDecoder{
labels: c.labels,
Meta: c.At(),
})
var chkSeries ChunkSeries = &seriesToChunkEncoder{Series: c.mergeFunc(overlapped...)}
heap.Push(&c.h, chkSeries)
return true
}
func (c *compactChunkIterator) Err() error {
var errs tsdb_errors.MultiError
for _, iter := range c.iterators {
if err := iter.Err(); err != nil {
errs.Add(err)
}
}
return errs.Err()
}
type chunkIteratorHeap []chunks.Iterator
func (h chunkIteratorHeap) Len() int { return len(h) }
func (h chunkIteratorHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h chunkIteratorHeap) Less(i, j int) bool {
at := h[i].At()
bt := h[j].At()
if at.MinTime == bt.MinTime {
return at.MaxTime < bt.MaxTime
}
return at.MinTime < bt.MinTime
}
func (h *chunkIteratorHeap) Push(x interface{}) {
*h = append(*h, x.(chunks.Iterator))
}
func (h *chunkIteratorHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}