mirror of
https://github.com/prometheus/prometheus.git
synced 2025-01-03 09:57:26 -08:00
dcfd09c801
If the metrics exported by a process already contain any of a target's base labels (such as "job" or "instance", but also any manually assigned target-group label), don't overwrite that label, but instead add a new label consisting of the original label name prepended with "exporter_". This is to accomodate intermediate exporter jobs, which might indicate e.g. the jobs and instances for which they are exporting data.
217 lines
6.7 KiB
Go
217 lines
6.7 KiB
Go
// Copyright 2013 Prometheus Team
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package format
|
|
|
|
import (
|
|
"container/list"
|
|
"fmt"
|
|
"github.com/prometheus/prometheus/model"
|
|
"github.com/prometheus/prometheus/utility/test"
|
|
"os"
|
|
"path"
|
|
"testing"
|
|
"time"
|
|
)
|
|
|
|
func testProcessor002Process(t test.Tester) {
|
|
var scenarios = []struct {
|
|
in string
|
|
baseLabels model.LabelSet
|
|
out model.Samples
|
|
err error
|
|
}{
|
|
{
|
|
in: "empty.json",
|
|
err: fmt.Errorf("EOF"),
|
|
},
|
|
{
|
|
in: "test0_0_1-0_0_2.json",
|
|
baseLabels: model.LabelSet{
|
|
model.JobLabel: "batch_exporter",
|
|
},
|
|
out: model.Samples{
|
|
model.Sample{
|
|
Metric: model.Metric{"service": "zed", model.MetricNameLabel: "rpc_calls_total", "job": "batch_job", "exporter_job": "batch_exporter"},
|
|
Value: 25,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"service": "bar", model.MetricNameLabel: "rpc_calls_total", "job": "batch_job", "exporter_job": "batch_exporter"},
|
|
Value: 25,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"service": "foo", model.MetricNameLabel: "rpc_calls_total", "job": "batch_job", "exporter_job": "batch_exporter"},
|
|
Value: 25,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.010000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
|
|
Value: 0.0459814091918713,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.010000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
|
|
Value: 78.48563317257356,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.010000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
|
|
Value: 15.890724674774395,
|
|
},
|
|
model.Sample{
|
|
|
|
Metric: model.Metric{"percentile": "0.050000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
|
|
Value: 0.0459814091918713,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.050000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
|
|
Value: 78.48563317257356,
|
|
},
|
|
model.Sample{
|
|
|
|
Metric: model.Metric{"percentile": "0.050000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
|
|
Value: 15.890724674774395,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.500000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
|
|
Value: 0.6120456642749681,
|
|
},
|
|
model.Sample{
|
|
|
|
Metric: model.Metric{"percentile": "0.500000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
|
|
Value: 97.31798360385088,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.500000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
|
|
Value: 84.63044031436561,
|
|
},
|
|
model.Sample{
|
|
|
|
Metric: model.Metric{"percentile": "0.900000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
|
|
Value: 1.355915069887731,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.900000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
|
|
Value: 109.89202084295582,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.900000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
|
|
Value: 160.21100853053224,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.990000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
|
|
Value: 1.772733213161236,
|
|
},
|
|
model.Sample{
|
|
|
|
Metric: model.Metric{"percentile": "0.990000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
|
|
Value: 109.99626121011262,
|
|
},
|
|
model.Sample{
|
|
Metric: model.Metric{"percentile": "0.990000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
|
|
Value: 172.49828748957728,
|
|
},
|
|
},
|
|
},
|
|
}
|
|
|
|
for i, scenario := range scenarios {
|
|
inputChannel := make(chan Result, 1024)
|
|
|
|
defer func(c chan Result) {
|
|
close(c)
|
|
}(inputChannel)
|
|
|
|
reader, err := os.Open(path.Join("fixtures", scenario.in))
|
|
if err != nil {
|
|
t.Fatalf("%d. couldn't open scenario input file %s: %s", scenario.in, err)
|
|
}
|
|
|
|
err = Processor002.Process(reader, time.Now(), scenario.baseLabels, inputChannel)
|
|
if !test.ErrorEqual(scenario.err, err) {
|
|
t.Errorf("%d. expected err of %s, got %s", i, scenario.err, err)
|
|
continue
|
|
}
|
|
|
|
delivered := model.Samples{}
|
|
|
|
for len(inputChannel) != 0 {
|
|
result := <-inputChannel
|
|
if result.Err != nil {
|
|
t.Fatalf("%d. expected no error, got: %s", i, result.Err)
|
|
}
|
|
delivered = append(delivered, result.Samples...)
|
|
}
|
|
|
|
if len(delivered) != len(scenario.out) {
|
|
t.Errorf("%d. expected output length of %d, got %d", i, len(scenario.out), len(delivered))
|
|
|
|
continue
|
|
}
|
|
|
|
expectedElements := list.New()
|
|
for _, j := range scenario.out {
|
|
expectedElements.PushBack(j)
|
|
}
|
|
|
|
for j := 0; j < len(delivered); j++ {
|
|
actual := delivered[j]
|
|
|
|
found := false
|
|
for element := expectedElements.Front(); element != nil && found == false; element = element.Next() {
|
|
candidate := element.Value.(model.Sample)
|
|
|
|
if candidate.Value != actual.Value {
|
|
continue
|
|
}
|
|
|
|
if len(candidate.Metric) != len(actual.Metric) {
|
|
continue
|
|
}
|
|
|
|
labelsMatch := false
|
|
|
|
for key, value := range candidate.Metric {
|
|
actualValue, ok := actual.Metric[key]
|
|
if !ok {
|
|
break
|
|
}
|
|
if actualValue == value {
|
|
labelsMatch = true
|
|
break
|
|
}
|
|
}
|
|
|
|
if !labelsMatch {
|
|
continue
|
|
}
|
|
|
|
// XXX: Test time.
|
|
found = true
|
|
expectedElements.Remove(element)
|
|
}
|
|
|
|
if !found {
|
|
t.Errorf("%d.%d. expected to find %s among candidate, absent", i, j, actual)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestProcessor002Process(t *testing.T) {
|
|
testProcessor002Process(t)
|
|
}
|
|
|
|
func BenchmarkProcessor002Process(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
testProcessor002Process(b)
|
|
}
|
|
}
|