prometheus/promql/functions.go
Brian Brazil dd6781add2 Optimise PromQL (#3966)
* Move range logic to 'eval'

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Make aggregegate range aware

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* PromQL is statically typed, so don't eval to find the type.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Extend rangewrapper to multiple exprs

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Start making function evaluation ranged

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Make instant queries a special case of range queries

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Eliminate evalString

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Evaluate range vector functions one series at a time

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Make unary operators range aware

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Make binops range aware

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Pass time to range-aware functions.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Make simple _over_time functions range aware

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Reduce allocs when working with matrix selectors

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Add basic benchmark for range evaluation

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Reuse objects for function arguments

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Do dropmetricname and allocating output vector only once.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Add range-aware support for range vector functions with params

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Optimise holt_winters, cut cpu and allocs by ~25%

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Make rate&friends range aware

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Make more functions range aware. Document calling convention.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Make date functions range aware

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Make simple math functions range aware

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Convert more functions to be range aware

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Make more functions range aware

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Specialcase timestamp() with vector selector arg for range awareness

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Remove transition code for functions

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Remove the rest of the engine transition code

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Remove more obselete code

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Remove the last uses of the eval* functions

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Remove engine finalizers to prevent corruption

The finalizers set by matrixSelector were being called
just before the value they were retruning to the pool
was then being provided to the caller. Thus a concurrent query
could corrupt the data that the user has just been returned.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Add new benchmark suite for range functinos

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Migrate existing benchmarks to new system

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Expand promql benchmarks

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Simply test by removing unused range code

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* When testing instant queries, check range queries too.

To protect against subsequent steps in a range query being
affected by the previous steps, add a test that evaluates
an instant query that we know works again as a range query
with the tiimestamp we care about not being the first step.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Reuse ring for matrix iters. Put query results back in pool.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Reuse buffer when iterating over matrix selectors

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Unary minus should remove metric name

Cut down benchmarks for faster runs.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Reduce repetition in benchmark test cases

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Work series by series when doing normal vectorSelectors

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Optimise benchmark setup, cuts time by 60%

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Have rangeWrapper use an evalNodeHelper to cache across steps

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Use evalNodeHelper with functions

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Cache dropMetricName within a node evaluation.

This saves both the calculations and allocs done by dropMetricName
across steps.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Reuse input vectors in rangewrapper

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Reuse the point slices in the matrixes input/output by rangeWrapper

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Make benchmark setup faster using AddFast

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Simplify benchmark code.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Add caching in VectorBinop

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Use xor to have one-level resultMetric hash key

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Add more benchmarks

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Call Query.Close in apiv1

This allows point slices allocated for the response data
to be reused by later queries, saving allocations.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Optimise histogram_quantile

It's now 5-10% faster with 97% less garbage generated for 1k steps

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Make the input collection in rangeVector linear rather than quadratic

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Optimise label_replace, for 1k steps 15x fewer allocs and 3x faster

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Optimise label_join, 1.8x faster and 11x less memory for 1k steps

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Expand benchmarks, cleanup comments, simplify numSteps logic.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Address Fabian's comments

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Comments from Alin.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Address jrv's comments

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Remove dead code

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Address Simon's comments.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Rename populateIterators, pre-init some sizes

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Handle case where function has non-matrix args first

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Split rangeWrapper out to rangeEval function, improve comments

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Cleanup and make things more consistent

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Make EvalNodeHelper public

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>

* Fabian's comments.

Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2018-06-04 15:47:45 +02:00

1270 lines
35 KiB
Go

// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"fmt"
"math"
"regexp"
"sort"
"strconv"
"strings"
"time"
"github.com/prometheus/common/model"
"github.com/prometheus/prometheus/pkg/labels"
)
// Function represents a function of the expression language and is
// used by function nodes.
type Function struct {
Name string
ArgTypes []ValueType
Variadic int
ReturnType ValueType
// vals is a list of the evaluated arguments for the function call.
// For range vectors it will be a Matrix with one series, instant vectors a
// Vector, scalars a Vector with one series whose value is the scalar
// value,and nil for strings.
// args are the original arguments to the function, where you can access
// matrixSelectors, vectorSelectors, and StringLiterals.
// enh.out is a pre-allocated empty vector that you may use to accumulate
// output before returning it. The vectors in vals should not be returned.a
// Range vector functions need only return a vector with the right value,
// the metric and timestamp are not neded.
// Instant vector functions need only return a vector with the right values and
// metrics, the timestamp are not needed.
// Scalar results should be returned as the value of a sample in a Vector.
Call func(vals []Value, args Expressions, enh *EvalNodeHelper) Vector
}
// === time() float64 ===
func funcTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return Vector{Sample{Point: Point{
V: float64(enh.ts) / 1000,
}}}
}
// extrapolatedRate is a utility function for rate/increase/delta.
// It calculates the rate (allowing for counter resets if isCounter is true),
// extrapolates if the first/last sample is close to the boundary, and returns
// the result as either per-second (if isRate is true) or overall.
func extrapolatedRate(vals []Value, args Expressions, enh *EvalNodeHelper, isCounter bool, isRate bool) Vector {
ms := args[0].(*MatrixSelector)
var (
matrix = vals[0].(Matrix)
rangeStart = enh.ts - durationMilliseconds(ms.Range+ms.Offset)
rangeEnd = enh.ts - durationMilliseconds(ms.Offset)
)
for _, samples := range matrix {
// No sense in trying to compute a rate without at least two points. Drop
// this Vector element.
if len(samples.Points) < 2 {
continue
}
var (
counterCorrection float64
lastValue float64
)
for _, sample := range samples.Points {
if isCounter && sample.V < lastValue {
counterCorrection += lastValue
}
lastValue = sample.V
}
resultValue := lastValue - samples.Points[0].V + counterCorrection
// Duration between first/last samples and boundary of range.
durationToStart := float64(samples.Points[0].T-rangeStart) / 1000
durationToEnd := float64(rangeEnd-samples.Points[len(samples.Points)-1].T) / 1000
sampledInterval := float64(samples.Points[len(samples.Points)-1].T-samples.Points[0].T) / 1000
averageDurationBetweenSamples := sampledInterval / float64(len(samples.Points)-1)
if isCounter && resultValue > 0 && samples.Points[0].V >= 0 {
// Counters cannot be negative. If we have any slope at
// all (i.e. resultValue went up), we can extrapolate
// the zero point of the counter. If the duration to the
// zero point is shorter than the durationToStart, we
// take the zero point as the start of the series,
// thereby avoiding extrapolation to negative counter
// values.
durationToZero := sampledInterval * (samples.Points[0].V / resultValue)
if durationToZero < durationToStart {
durationToStart = durationToZero
}
}
// If the first/last samples are close to the boundaries of the range,
// extrapolate the result. This is as we expect that another sample
// will exist given the spacing between samples we've seen thus far,
// with an allowance for noise.
extrapolationThreshold := averageDurationBetweenSamples * 1.1
extrapolateToInterval := sampledInterval
if durationToStart < extrapolationThreshold {
extrapolateToInterval += durationToStart
} else {
extrapolateToInterval += averageDurationBetweenSamples / 2
}
if durationToEnd < extrapolationThreshold {
extrapolateToInterval += durationToEnd
} else {
extrapolateToInterval += averageDurationBetweenSamples / 2
}
resultValue = resultValue * (extrapolateToInterval / sampledInterval)
if isRate {
resultValue = resultValue / ms.Range.Seconds()
}
enh.out = append(enh.out, Sample{
Point: Point{V: resultValue},
})
}
return enh.out
}
// === delta(Matrix ValueTypeMatrix) Vector ===
func funcDelta(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return extrapolatedRate(vals, args, enh, false, false)
}
// === rate(node ValueTypeMatrix) Vector ===
func funcRate(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return extrapolatedRate(vals, args, enh, true, true)
}
// === increase(node ValueTypeMatrix) Vector ===
func funcIncrease(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return extrapolatedRate(vals, args, enh, true, false)
}
// === irate(node ValueTypeMatrix) Vector ===
func funcIrate(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return instantValue(vals, enh.out, true)
}
// === idelta(node model.ValMatric) Vector ===
func funcIdelta(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return instantValue(vals, enh.out, false)
}
func instantValue(vals []Value, out Vector, isRate bool) Vector {
for _, samples := range vals[0].(Matrix) {
// No sense in trying to compute a rate without at least two points. Drop
// this Vector element.
if len(samples.Points) < 2 {
continue
}
lastSample := samples.Points[len(samples.Points)-1]
previousSample := samples.Points[len(samples.Points)-2]
var resultValue float64
if isRate && lastSample.V < previousSample.V {
// Counter reset.
resultValue = lastSample.V
} else {
resultValue = lastSample.V - previousSample.V
}
sampledInterval := lastSample.T - previousSample.T
if sampledInterval == 0 {
// Avoid dividing by 0.
continue
}
if isRate {
// Convert to per-second.
resultValue /= float64(sampledInterval) / 1000
}
out = append(out, Sample{
Point: Point{V: resultValue},
})
}
return out
}
// Calculate the trend value at the given index i in raw data d.
// This is somewhat analogous to the slope of the trend at the given index.
// The argument "s" is the set of computed smoothed values.
// The argument "b" is the set of computed trend factors.
// The argument "d" is the set of raw input values.
func calcTrendValue(i int, sf, tf, s0, s1, b float64) float64 {
if i == 0 {
return b
}
x := tf * (s1 - s0)
y := (1 - tf) * b
return x + y
}
// Holt-Winters is similar to a weighted moving average, where historical data has exponentially less influence on the current data.
// Holt-Winter also accounts for trends in data. The smoothing factor (0 < sf < 1) affects how historical data will affect the current
// data. A lower smoothing factor increases the influence of historical data. The trend factor (0 < tf < 1) affects
// how trends in historical data will affect the current data. A higher trend factor increases the influence.
// of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing".
func funcHoltWinters(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
mat := vals[0].(Matrix)
// The smoothing factor argument.
sf := vals[1].(Vector)[0].V
// The trend factor argument.
tf := vals[2].(Vector)[0].V
// Sanity check the input.
if sf <= 0 || sf >= 1 {
panic(fmt.Errorf("invalid smoothing factor. Expected: 0 < sf < 1 goT: %f", sf))
}
if tf <= 0 || tf >= 1 {
panic(fmt.Errorf("invalid trend factor. Expected: 0 < tf < 1 goT: %f", sf))
}
var l int
for _, samples := range mat {
l = len(samples.Points)
// Can't do the smoothing operation with less than two points.
if l < 2 {
continue
}
var s0, s1, b float64
// Set initial values.
s1 = samples.Points[0].V
b = samples.Points[1].V - samples.Points[0].V
// Run the smoothing operation.
var x, y float64
for i := 1; i < l; i++ {
// Scale the raw value against the smoothing factor.
x = sf * samples.Points[i].V
// Scale the last smoothed value with the trend at this point.
b = calcTrendValue(i-1, sf, tf, s0, s1, b)
y = (1 - sf) * (s1 + b)
s0, s1 = s1, x+y
}
enh.out = append(enh.out, Sample{
Point: Point{V: s1},
})
}
return enh.out
}
// === sort(node ValueTypeVector) Vector ===
func funcSort(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
// NaN should sort to the bottom, so take descending sort with NaN first and
// reverse it.
byValueSorter := vectorByReverseValueHeap(vals[0].(Vector))
sort.Sort(sort.Reverse(byValueSorter))
return Vector(byValueSorter)
}
// === sortDesc(node ValueTypeVector) Vector ===
func funcSortDesc(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
// NaN should sort to the bottom, so take ascending sort with NaN first and
// reverse it.
byValueSorter := vectorByValueHeap(vals[0].(Vector))
sort.Sort(sort.Reverse(byValueSorter))
return Vector(byValueSorter)
}
// === clamp_max(Vector ValueTypeVector, max Scalar) Vector ===
func funcClampMax(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
vec := vals[0].(Vector)
max := vals[1].(Vector)[0].Point.V
for _, el := range vec {
enh.out = append(enh.out, Sample{
Metric: enh.dropMetricName(el.Metric),
Point: Point{V: math.Min(max, float64(el.V))},
})
}
return enh.out
}
// === clamp_min(Vector ValueTypeVector, min Scalar) Vector ===
func funcClampMin(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
vec := vals[0].(Vector)
min := vals[1].(Vector)[0].Point.V
for _, el := range vec {
enh.out = append(enh.out, Sample{
Metric: enh.dropMetricName(el.Metric),
Point: Point{V: math.Max(min, float64(el.V))},
})
}
return enh.out
}
// === round(Vector ValueTypeVector, toNearest=1 Scalar) Vector ===
func funcRound(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
vec := vals[0].(Vector)
// round returns a number rounded to toNearest.
// Ties are solved by rounding up.
toNearest := float64(1)
if len(args) >= 2 {
toNearest = vals[1].(Vector)[0].Point.V
}
// Invert as it seems to cause fewer floating point accuracy issues.
toNearestInverse := 1.0 / toNearest
for _, el := range vec {
v := math.Floor(float64(el.V)*toNearestInverse+0.5) / toNearestInverse
enh.out = append(enh.out, Sample{
Metric: enh.dropMetricName(el.Metric),
Point: Point{V: v},
})
}
return enh.out
}
// === Scalar(node ValueTypeVector) Scalar ===
func funcScalar(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
v := vals[0].(Vector)
if len(v) != 1 {
return append(enh.out, Sample{
Point: Point{V: math.NaN()},
})
}
return append(enh.out, Sample{
Point: Point{V: v[0].V},
})
}
func aggrOverTime(vals []Value, enh *EvalNodeHelper, aggrFn func([]Point) float64) Vector {
mat := vals[0].(Matrix)
for _, el := range mat {
if len(el.Points) == 0 {
continue
}
enh.out = append(enh.out, Sample{
Point: Point{V: aggrFn(el.Points)},
})
}
return enh.out
}
// === avg_over_time(Matrix ValueTypeMatrix) Vector ===
func funcAvgOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return aggrOverTime(vals, enh, func(values []Point) float64 {
var sum float64
for _, v := range values {
sum += v.V
}
return sum / float64(len(values))
})
}
// === count_over_time(Matrix ValueTypeMatrix) Vector ===
func funcCountOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return aggrOverTime(vals, enh, func(values []Point) float64 {
return float64(len(values))
})
}
// === floor(Vector ValueTypeVector) Vector ===
// === max_over_time(Matrix ValueTypeMatrix) Vector ===
func funcMaxOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return aggrOverTime(vals, enh, func(values []Point) float64 {
max := math.Inf(-1)
for _, v := range values {
max = math.Max(max, float64(v.V))
}
return max
})
}
// === min_over_time(Matrix ValueTypeMatrix) Vector ===
func funcMinOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return aggrOverTime(vals, enh, func(values []Point) float64 {
min := math.Inf(1)
for _, v := range values {
min = math.Min(min, float64(v.V))
}
return min
})
}
// === sum_over_time(Matrix ValueTypeMatrix) Vector ===
func funcSumOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return aggrOverTime(vals, enh, func(values []Point) float64 {
var sum float64
for _, v := range values {
sum += v.V
}
return sum
})
}
// === quantile_over_time(Matrix ValueTypeMatrix) Vector ===
func funcQuantileOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
q := vals[0].(Vector)[0].V
mat := vals[1].(Matrix)
for _, el := range mat {
if len(el.Points) == 0 {
continue
}
values := make(vectorByValueHeap, 0, len(el.Points))
for _, v := range el.Points {
values = append(values, Sample{Point: Point{V: v.V}})
}
enh.out = append(enh.out, Sample{
Point: Point{V: quantile(q, values)},
})
}
return enh.out
}
// === stddev_over_time(Matrix ValueTypeMatrix) Vector ===
func funcStddevOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return aggrOverTime(vals, enh, func(values []Point) float64 {
var sum, squaredSum, count float64
for _, v := range values {
sum += v.V
squaredSum += v.V * v.V
count++
}
avg := sum / count
return math.Sqrt(float64(squaredSum/count - avg*avg))
})
}
// === stdvar_over_time(Matrix ValueTypeMatrix) Vector ===
func funcStdvarOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return aggrOverTime(vals, enh, func(values []Point) float64 {
var sum, squaredSum, count float64
for _, v := range values {
sum += v.V
squaredSum += v.V * v.V
count++
}
avg := sum / count
return squaredSum/count - avg*avg
})
}
// === absent(Vector ValueTypeVector) Vector ===
func funcAbsent(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
if len(vals[0].(Vector)) > 0 {
return enh.out
}
m := []labels.Label{}
if vs, ok := args[0].(*VectorSelector); ok {
for _, ma := range vs.LabelMatchers {
if ma.Type == labels.MatchEqual && ma.Name != labels.MetricName {
m = append(m, labels.Label{Name: ma.Name, Value: ma.Value})
}
}
}
return append(enh.out,
Sample{
Metric: labels.New(m...),
Point: Point{V: 1},
})
}
func simpleFunc(vals []Value, enh *EvalNodeHelper, f func(float64) float64) Vector {
for _, el := range vals[0].(Vector) {
enh.out = append(enh.out, Sample{
Metric: enh.dropMetricName(el.Metric),
Point: Point{V: f(el.V)},
})
}
return enh.out
}
// === abs(Vector ValueTypeVector) Vector ===
func funcAbs(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return simpleFunc(vals, enh, math.Abs)
}
// === ceil(Vector ValueTypeVector) Vector ===
func funcCeil(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return simpleFunc(vals, enh, math.Ceil)
}
// === floor(Vector ValueTypeVector) Vector ===
func funcFloor(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return simpleFunc(vals, enh, math.Floor)
}
// === exp(Vector ValueTypeVector) Vector ===
func funcExp(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return simpleFunc(vals, enh, math.Exp)
}
// === sqrt(Vector VectorNode) Vector ===
func funcSqrt(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return simpleFunc(vals, enh, math.Sqrt)
}
// === ln(Vector ValueTypeVector) Vector ===
func funcLn(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return simpleFunc(vals, enh, math.Log)
}
// === log2(Vector ValueTypeVector) Vector ===
func funcLog2(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return simpleFunc(vals, enh, math.Log2)
}
// === log10(Vector ValueTypeVector) Vector ===
func funcLog10(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return simpleFunc(vals, enh, math.Log10)
}
// === timestamp(Vector ValueTypeVector) Vector ===
func funcTimestamp(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
vec := vals[0].(Vector)
for _, el := range vec {
enh.out = append(enh.out, Sample{
Metric: enh.dropMetricName(el.Metric),
Point: Point{V: float64(el.T) / 1000},
})
}
return enh.out
}
// linearRegression performs a least-square linear regression analysis on the
// provided SamplePairs. It returns the slope, and the intercept value at the
// provided time.
func linearRegression(samples []Point, interceptTime int64) (slope, intercept float64) {
var (
n float64
sumX, sumY float64
sumXY, sumX2 float64
)
for _, sample := range samples {
x := float64(sample.T-interceptTime) / 1e3
n += 1.0
sumY += sample.V
sumX += x
sumXY += x * sample.V
sumX2 += x * x
}
covXY := sumXY - sumX*sumY/n
varX := sumX2 - sumX*sumX/n
slope = covXY / varX
intercept = sumY/n - slope*sumX/n
return slope, intercept
}
// === deriv(node ValueTypeMatrix) Vector ===
func funcDeriv(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
mat := vals[0].(Matrix)
for _, samples := range mat {
// No sense in trying to compute a derivative without at least two points.
// Drop this Vector element.
if len(samples.Points) < 2 {
continue
}
// We pass in an arbitrary timestamp that is near the values in use
// to avoid floating point accuracy issues, see
// https://github.com/prometheus/prometheus/issues/2674
slope, _ := linearRegression(samples.Points, samples.Points[0].T)
enh.out = append(enh.out, Sample{
Point: Point{V: slope},
})
}
return enh.out
}
// === predict_linear(node ValueTypeMatrix, k ValueTypeScalar) Vector ===
func funcPredictLinear(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
mat := vals[0].(Matrix)
duration := vals[1].(Vector)[0].V
for _, samples := range mat {
// No sense in trying to predict anything without at least two points.
// Drop this Vector element.
if len(samples.Points) < 2 {
continue
}
slope, intercept := linearRegression(samples.Points, enh.ts)
enh.out = append(enh.out, Sample{
Point: Point{V: slope*duration + intercept},
})
}
return enh.out
}
// === histogram_quantile(k ValueTypeScalar, Vector ValueTypeVector) Vector ===
func funcHistogramQuantile(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
q := vals[0].(Vector)[0].V
inVec := vals[1].(Vector)
sigf := enh.signatureFunc(false, excludedLabels...)
if enh.signatureToMetricWithBuckets == nil {
enh.signatureToMetricWithBuckets = map[uint64]*metricWithBuckets{}
} else {
for _, v := range enh.signatureToMetricWithBuckets {
v.buckets = v.buckets[:0]
}
}
for _, el := range inVec {
upperBound, err := strconv.ParseFloat(
el.Metric.Get(model.BucketLabel), 64,
)
if err != nil {
// Oops, no bucket label or malformed label value. Skip.
// TODO(beorn7): Issue a warning somehow.
continue
}
hash := sigf(el.Metric)
mb, ok := enh.signatureToMetricWithBuckets[hash]
if !ok {
el.Metric = labels.NewBuilder(el.Metric).
Del(labels.BucketLabel, labels.MetricName).
Labels()
mb = &metricWithBuckets{el.Metric, nil}
enh.signatureToMetricWithBuckets[hash] = mb
}
mb.buckets = append(mb.buckets, bucket{upperBound, el.V})
}
for _, mb := range enh.signatureToMetricWithBuckets {
if len(mb.buckets) > 0 {
enh.out = append(enh.out, Sample{
Metric: mb.metric,
Point: Point{V: bucketQuantile(q, mb.buckets)},
})
}
}
return enh.out
}
// === resets(Matrix ValueTypeMatrix) Vector ===
func funcResets(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
in := vals[0].(Matrix)
for _, samples := range in {
resets := 0
prev := samples.Points[0].V
for _, sample := range samples.Points[1:] {
current := sample.V
if current < prev {
resets++
}
prev = current
}
enh.out = append(enh.out, Sample{
Point: Point{V: float64(resets)},
})
}
return enh.out
}
// === changes(Matrix ValueTypeMatrix) Vector ===
func funcChanges(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
in := vals[0].(Matrix)
for _, samples := range in {
changes := 0
prev := samples.Points[0].V
for _, sample := range samples.Points[1:] {
current := sample.V
if current != prev && !(math.IsNaN(float64(current)) && math.IsNaN(float64(prev))) {
changes++
}
prev = current
}
enh.out = append(enh.out, Sample{
Point: Point{V: float64(changes)},
})
}
return enh.out
}
// === label_replace(Vector ValueTypeVector, dst_label, replacement, src_labelname, regex ValueTypeString) Vector ===
func funcLabelReplace(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
var (
vector = vals[0].(Vector)
dst = args[1].(*StringLiteral).Val
repl = args[2].(*StringLiteral).Val
src = args[3].(*StringLiteral).Val
regexStr = args[4].(*StringLiteral).Val
)
if enh.regex == nil {
var err error
enh.regex, err = regexp.Compile("^(?:" + regexStr + ")$")
if err != nil {
panic(fmt.Errorf("invalid regular expression in label_replace(): %s", regexStr))
}
if !model.LabelNameRE.MatchString(string(dst)) {
panic(fmt.Errorf("invalid destination label name in label_replace(): %s", dst))
}
enh.dmn = make(map[uint64]labels.Labels, len(enh.out))
}
outSet := make(map[uint64]struct{}, len(vector))
for _, el := range vector {
h := el.Metric.Hash()
var outMetric labels.Labels
if l, ok := enh.dmn[h]; ok {
outMetric = l
} else {
srcVal := el.Metric.Get(src)
indexes := enh.regex.FindStringSubmatchIndex(srcVal)
if indexes == nil {
// If there is no match, no replacement should take place.
outMetric = el.Metric
enh.dmn[h] = outMetric
} else {
res := enh.regex.ExpandString([]byte{}, repl, srcVal, indexes)
lb := labels.NewBuilder(el.Metric).Del(dst)
if len(res) > 0 {
lb.Set(dst, string(res))
}
outMetric = lb.Labels()
enh.dmn[h] = outMetric
}
}
outHash := outMetric.Hash()
if _, ok := outSet[outHash]; ok {
panic(fmt.Errorf("duplicated label set in output of label_replace(): %s", el.Metric))
} else {
enh.out = append(enh.out,
Sample{
Metric: outMetric,
Point: Point{V: el.Point.V},
})
outSet[outHash] = struct{}{}
}
}
return enh.out
}
// === Vector(s Scalar) Vector ===
func funcVector(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return append(enh.out,
Sample{
Metric: labels.Labels{},
Point: Point{V: vals[0].(Vector)[0].V},
})
}
// === label_join(vector model.ValVector, dest_labelname, separator, src_labelname...) Vector ===
func funcLabelJoin(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
var (
vector = vals[0].(Vector)
dst = args[1].(*StringLiteral).Val
sep = args[2].(*StringLiteral).Val
srcLabels = make([]string, len(args)-3)
)
if enh.dmn == nil {
enh.dmn = make(map[uint64]labels.Labels, len(enh.out))
}
for i := 3; i < len(args); i++ {
src := args[i].(*StringLiteral).Val
if !model.LabelName(src).IsValid() {
panic(fmt.Errorf("invalid source label name in label_join(): %s", src))
}
srcLabels[i-3] = src
}
if !model.LabelName(dst).IsValid() {
panic(fmt.Errorf("invalid destination label name in label_join(): %s", dst))
}
outSet := make(map[uint64]struct{}, len(vector))
srcVals := make([]string, len(srcLabels))
for _, el := range vector {
h := el.Metric.Hash()
var outMetric labels.Labels
if l, ok := enh.dmn[h]; ok {
outMetric = l
} else {
for i, src := range srcLabels {
srcVals[i] = el.Metric.Get(src)
}
lb := labels.NewBuilder(el.Metric)
strval := strings.Join(srcVals, sep)
if strval == "" {
lb.Del(dst)
} else {
lb.Set(dst, strval)
}
outMetric = lb.Labels()
enh.dmn[h] = outMetric
}
outHash := outMetric.Hash()
if _, exists := outSet[outHash]; exists {
panic(fmt.Errorf("duplicated label set in output of label_join(): %s", el.Metric))
} else {
enh.out = append(enh.out, Sample{
Metric: outMetric,
Point: Point{V: el.Point.V},
})
outSet[outHash] = struct{}{}
}
}
return enh.out
}
// Common code for date related functions.
func dateWrapper(vals []Value, enh *EvalNodeHelper, f func(time.Time) float64) Vector {
if len(vals) == 0 {
return append(enh.out,
Sample{
Metric: labels.Labels{},
Point: Point{V: f(time.Unix(enh.ts/1000, 0).UTC())},
})
}
for _, el := range vals[0].(Vector) {
t := time.Unix(int64(el.V), 0).UTC()
enh.out = append(enh.out, Sample{
Metric: enh.dropMetricName(el.Metric),
Point: Point{V: f(t)},
})
}
return enh.out
}
// === days_in_month(v Vector) Scalar ===
func funcDaysInMonth(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return dateWrapper(vals, enh, func(t time.Time) float64 {
return float64(32 - time.Date(t.Year(), t.Month(), 32, 0, 0, 0, 0, time.UTC).Day())
})
}
// === day_of_month(v Vector) Scalar ===
func funcDayOfMonth(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return dateWrapper(vals, enh, func(t time.Time) float64 {
return float64(t.Day())
})
}
// === day_of_week(v Vector) Scalar ===
func funcDayOfWeek(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return dateWrapper(vals, enh, func(t time.Time) float64 {
return float64(t.Weekday())
})
}
// === hour(v Vector) Scalar ===
func funcHour(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return dateWrapper(vals, enh, func(t time.Time) float64 {
return float64(t.Hour())
})
}
// === minute(v Vector) Scalar ===
func funcMinute(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return dateWrapper(vals, enh, func(t time.Time) float64 {
return float64(t.Minute())
})
}
// === month(v Vector) Scalar ===
func funcMonth(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return dateWrapper(vals, enh, func(t time.Time) float64 {
return float64(t.Month())
})
}
// === year(v Vector) Scalar ===
func funcYear(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
return dateWrapper(vals, enh, func(t time.Time) float64 {
return float64(t.Year())
})
}
var functions = map[string]*Function{
"abs": {
Name: "abs",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcAbs,
},
"absent": {
Name: "absent",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcAbsent,
},
"avg_over_time": {
Name: "avg_over_time",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcAvgOverTime,
},
"ceil": {
Name: "ceil",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcCeil,
},
"changes": {
Name: "changes",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcChanges,
},
"clamp_max": {
Name: "clamp_max",
ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar},
ReturnType: ValueTypeVector,
Call: funcClampMax,
},
"clamp_min": {
Name: "clamp_min",
ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar},
ReturnType: ValueTypeVector,
Call: funcClampMin,
},
"count_over_time": {
Name: "count_over_time",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcCountOverTime,
},
"days_in_month": {
Name: "days_in_month",
ArgTypes: []ValueType{ValueTypeVector},
Variadic: 1,
ReturnType: ValueTypeVector,
Call: funcDaysInMonth,
},
"day_of_month": {
Name: "day_of_month",
ArgTypes: []ValueType{ValueTypeVector},
Variadic: 1,
ReturnType: ValueTypeVector,
Call: funcDayOfMonth,
},
"day_of_week": {
Name: "day_of_week",
ArgTypes: []ValueType{ValueTypeVector},
Variadic: 1,
ReturnType: ValueTypeVector,
Call: funcDayOfWeek,
},
"delta": {
Name: "delta",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcDelta,
},
"deriv": {
Name: "deriv",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcDeriv,
},
"exp": {
Name: "exp",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcExp,
},
"floor": {
Name: "floor",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcFloor,
},
"histogram_quantile": {
Name: "histogram_quantile",
ArgTypes: []ValueType{ValueTypeScalar, ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcHistogramQuantile,
},
"holt_winters": {
Name: "holt_winters",
ArgTypes: []ValueType{ValueTypeMatrix, ValueTypeScalar, ValueTypeScalar},
ReturnType: ValueTypeVector,
Call: funcHoltWinters,
},
"hour": {
Name: "hour",
ArgTypes: []ValueType{ValueTypeVector},
Variadic: 1,
ReturnType: ValueTypeVector,
Call: funcHour,
},
"idelta": {
Name: "idelta",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcIdelta,
},
"increase": {
Name: "increase",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcIncrease,
},
"irate": {
Name: "irate",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcIrate,
},
"label_replace": {
Name: "label_replace",
ArgTypes: []ValueType{ValueTypeVector, ValueTypeString, ValueTypeString, ValueTypeString, ValueTypeString},
ReturnType: ValueTypeVector,
Call: funcLabelReplace,
},
"label_join": {
Name: "label_join",
ArgTypes: []ValueType{ValueTypeVector, ValueTypeString, ValueTypeString, ValueTypeString},
Variadic: -1,
ReturnType: ValueTypeVector,
Call: funcLabelJoin,
},
"ln": {
Name: "ln",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcLn,
},
"log10": {
Name: "log10",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcLog10,
},
"log2": {
Name: "log2",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcLog2,
},
"max_over_time": {
Name: "max_over_time",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcMaxOverTime,
},
"min_over_time": {
Name: "min_over_time",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcMinOverTime,
},
"minute": {
Name: "minute",
ArgTypes: []ValueType{ValueTypeVector},
Variadic: 1,
ReturnType: ValueTypeVector,
Call: funcMinute,
},
"month": {
Name: "month",
ArgTypes: []ValueType{ValueTypeVector},
Variadic: 1,
ReturnType: ValueTypeVector,
Call: funcMonth,
},
"predict_linear": {
Name: "predict_linear",
ArgTypes: []ValueType{ValueTypeMatrix, ValueTypeScalar},
ReturnType: ValueTypeVector,
Call: funcPredictLinear,
},
"quantile_over_time": {
Name: "quantile_over_time",
ArgTypes: []ValueType{ValueTypeScalar, ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcQuantileOverTime,
},
"rate": {
Name: "rate",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcRate,
},
"resets": {
Name: "resets",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcResets,
},
"round": {
Name: "round",
ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar},
Variadic: 1,
ReturnType: ValueTypeVector,
Call: funcRound,
},
"scalar": {
Name: "scalar",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeScalar,
Call: funcScalar,
},
"sort": {
Name: "sort",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcSort,
},
"sort_desc": {
Name: "sort_desc",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcSortDesc,
},
"sqrt": {
Name: "sqrt",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcSqrt,
},
"stddev_over_time": {
Name: "stddev_over_time",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcStddevOverTime,
},
"stdvar_over_time": {
Name: "stdvar_over_time",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcStdvarOverTime,
},
"sum_over_time": {
Name: "sum_over_time",
ArgTypes: []ValueType{ValueTypeMatrix},
ReturnType: ValueTypeVector,
Call: funcSumOverTime,
},
"time": {
Name: "time",
ArgTypes: []ValueType{},
ReturnType: ValueTypeScalar,
Call: funcTime,
},
"timestamp": {
Name: "timestamp",
ArgTypes: []ValueType{ValueTypeVector},
ReturnType: ValueTypeVector,
Call: funcTimestamp,
},
"vector": {
Name: "vector",
ArgTypes: []ValueType{ValueTypeScalar},
ReturnType: ValueTypeVector,
Call: funcVector,
},
"year": {
Name: "year",
ArgTypes: []ValueType{ValueTypeVector},
Variadic: 1,
ReturnType: ValueTypeVector,
Call: funcYear,
},
}
// getFunction returns a predefined Function object for the given name.
func getFunction(name string) (*Function, bool) {
function, ok := functions[name]
return function, ok
}
type vectorByValueHeap Vector
func (s vectorByValueHeap) Len() int {
return len(s)
}
func (s vectorByValueHeap) Less(i, j int) bool {
if math.IsNaN(float64(s[i].V)) {
return true
}
return s[i].V < s[j].V
}
func (s vectorByValueHeap) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s *vectorByValueHeap) Push(x interface{}) {
*s = append(*s, *(x.(*Sample)))
}
func (s *vectorByValueHeap) Pop() interface{} {
old := *s
n := len(old)
el := old[n-1]
*s = old[0 : n-1]
return el
}
type vectorByReverseValueHeap Vector
func (s vectorByReverseValueHeap) Len() int {
return len(s)
}
func (s vectorByReverseValueHeap) Less(i, j int) bool {
if math.IsNaN(float64(s[i].V)) {
return true
}
return s[i].V > s[j].V
}
func (s vectorByReverseValueHeap) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s *vectorByReverseValueHeap) Push(x interface{}) {
*s = append(*s, *(x.(*Sample)))
}
func (s *vectorByReverseValueHeap) Pop() interface{} {
old := *s
n := len(old)
el := old[n-1]
*s = old[0 : n-1]
return el
}