prometheus/tsdb/chunks/queue.go
Peter Štibraný 1e2d2fb2d8
Job queue (#247)
This PR reimplements chan chunkWriteJob with custom buffered queue that should use less memory, because it doesn't preallocate entire buffer for maximum queue size at once. Instead it allocates individual "segments" with smaller size.

As elements are added to the queue, they fill individual segments. When elements are removed from the queue (and segments), empty segments can be thrown away. This doesn't change memory usage of the queue when it's full, but should decrease its memory footprint when it's empty (queue will keep max 1 segment in such case).
2022-06-07 17:42:28 +02:00

128 lines
3.4 KiB
Go

package chunks
import "sync"
// writeJobQueue is similar to buffered channel of chunkWriteJob, but manages its own buffers
// to avoid using a lot of memory when it's empty. It does that by storing elements into segments
// of equal size (segmentSize). When segment is not used anymore, reference to it are removed,
// so it can be treated as a garbage.
type writeJobQueue struct {
maxSize int
segmentSize int
mtx sync.Mutex // protects all following variables
pushed, popped *sync.Cond // signalled when something is pushed into the queue or popped from it
first, last *writeJobQueueSegment // pointer to first and last segment, if any
size int // total size of the queue
closed bool // after closing the queue, nothing can be pushed to it
}
type writeJobQueueSegment struct {
segment []chunkWriteJob
nextRead, nextWrite int // index of next read and next write in this segment.
nextSegment *writeJobQueueSegment // next segment, if any
}
func newWriteJobQueue(maxSize, segmentSize int) *writeJobQueue {
if maxSize <= 0 || segmentSize <= 0 {
panic("invalid queue")
}
q := &writeJobQueue{
maxSize: maxSize,
segmentSize: segmentSize,
}
q.pushed = sync.NewCond(&q.mtx)
q.popped = sync.NewCond(&q.mtx)
return q
}
func (q *writeJobQueue) close() {
q.mtx.Lock()
defer q.mtx.Unlock()
q.closed = true
// unblock all blocked goroutines
q.pushed.Broadcast()
q.popped.Broadcast()
}
// push blocks until there is space available in the queue, and then adds job to the queue.
// If queue is closed or gets closed while waiting for space, push returns false.
func (q *writeJobQueue) push(job chunkWriteJob) bool {
q.mtx.Lock()
defer q.mtx.Unlock()
// wait until queue has more space or is closed
for !q.closed && q.size >= q.maxSize {
q.popped.Wait()
}
if q.closed {
return false
}
// Check if this segment has more space for writing, and create new one if not.
if q.last == nil || q.last.nextWrite >= q.segmentSize {
prevLast := q.last
q.last = &writeJobQueueSegment{
segment: make([]chunkWriteJob, q.segmentSize),
}
if prevLast != nil {
prevLast.nextSegment = q.last
}
if q.first == nil {
q.first = q.last
}
}
q.last.segment[q.last.nextWrite] = job
q.last.nextWrite++
q.size++
q.pushed.Signal()
return true
}
// pop returns first job from the queue, and true.
// if queue is empty, pop blocks until there is a job (returns true), or until queue is closed (returns false).
// If queue was already closed, pop first returns all remaining elements from the queue (with true value), and only then returns false.
func (q *writeJobQueue) pop() (chunkWriteJob, bool) {
q.mtx.Lock()
defer q.mtx.Unlock()
// wait until something is pushed to the queue, or queue is closed.
for q.size == 0 {
if q.closed {
return chunkWriteJob{}, false
}
q.pushed.Wait()
}
res := q.first.segment[q.first.nextRead]
q.first.segment[q.first.nextRead] = chunkWriteJob{} // clear just-read element
q.first.nextRead++
q.size--
// If we have read all possible elements from first segment, we can drop it.
if q.first.nextRead >= q.segmentSize {
q.first = q.first.nextSegment
if q.first == nil {
q.last = nil
}
}
q.popped.Signal()
return res, true
}
func (q *writeJobQueue) length() int {
q.mtx.Lock()
defer q.mtx.Unlock()
return q.size
}