prometheus/consoles/node.html
Brian Brazil f69d7a118f promql: Add irate() function
irate is a rate function that only looks at the most
recent two data points, and calucaltes a per-second value
from that. This produces much more granular graphs for
fast moving data, and works sanely across many scrape intervals.

It doesn't do so well for slowly moving data.
2016-01-11 16:48:23 +01:00

35 lines
1.4 KiB
HTML

{{ template "head" . }}
{{ template "prom_right_table_head" }}
<tr>
<th>Node</th>
<th>{{ template "prom_query_drilldown" (args "sum(up{job='node'})") }} / {{ template "prom_query_drilldown" (args "count(up{job='node'})") }}</th>
</tr>
{{ template "prom_right_table_tail" }}
{{ template "prom_content_head" . }}
<h1>Node</h1>
<table class="table table-condensed table-striped table-bordered" style="width: 0%">
<tr>
<th>Node</th>
<th>Up</th>
<th>CPU<br/>Used</th>
<th>Memory<br/> Available</th>
</tr>
{{ range query "up{job='node'}" | sortByLabel "instance" }}
<tr>
<td><a href="node-overview.html?instance={{ .Labels.instance }}">{{ reReplaceAll "(.*?://)([^:/]+?)(:\\d+)?/.*" "$2" .Labels.instance }}</a></td>
<td{{ if eq (. | value) 1.0 }}>Yes{{ else }} class="alert-danger">No{{ end }}</td>
<td>{{ template "prom_query_drilldown" (args (printf "100 * (1 - avg by(instance)(irate(node_cpu{job='node',mode='idle',instance='%s'}[5m])))" .Labels.instance) "%" "printf.1f") }}</td>
<td>{{ template "prom_query_drilldown" (args (printf "node_memory_MemFree{job='node',instance='%s'} + node_memory_Cached{job='node',instance='%s'} + node_memory_Buffers{job='node',instance='%s'}" .Labels.instance .Labels.instance .Labels.instance) "B" "humanize1024") }}</td>
</tr>
{{ else }}
<tr><td colspan=4>No nodes found.</td></tr>
{{ end }}
{{ template "prom_content_tail" . }}
{{ template "tail" }}