prometheus/storage/metric/tiered/processor.go
Julius Volz 01f652cb4c Separate storage implementation from interfaces.
This was initially motivated by wanting to distribute the rule checker
tool under `tools/rule_checker`. However, this was not possible without
also distributing the LevelDB dynamic libraries because the tool
transitively depended on Levigo:

rule checker -> query layer -> tiered storage layer -> leveldb

This change separates external storage interfaces from the
implementation (tiered storage, leveldb storage, memory storage) by
putting them into separate packages:

- storage/metric: public, implementation-agnostic interfaces
- storage/metric/tiered: tiered storage implementation, including memory
                         and LevelDB storage.

I initially also considered splitting up the implementation into
separate packages for tiered storage, memory storage, and LevelDB
storage, but these are currently so intertwined that it would be another
major project in itself.

The query layers and most other parts of Prometheus now have notion of
the storage implementation anymore and just use whatever implementation
they get passed in via interfaces.

The rule_checker is now a static binary :)

Change-Id: I793bbf631a8648ca31790e7e772ecf9c2b92f7a0
2014-04-16 13:30:19 +02:00

450 lines
14 KiB
Go

// Copyright 2013 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tiered
import (
"fmt"
"code.google.com/p/goprotobuf/proto"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/storage/metric"
"github.com/prometheus/prometheus/storage/raw"
"github.com/prometheus/prometheus/storage/raw/leveldb"
dto "github.com/prometheus/prometheus/model/generated"
)
// Processor models a post-processing agent that performs work given a sample
// corpus.
type Processor interface {
// Name emits the name of this processor's signature encoder. It must
// be fully-qualified in the sense that it could be used via a Protocol
// Buffer registry to extract the descriptor to reassemble this message.
Name() string
// Signature emits a byte signature for this process for the purpose of
// remarking how far along it has been applied to the database.
Signature() []byte
// Apply runs this processor against the sample set. sampleIterator
// expects to be pre-seeked to the initial starting position. The
// processor will run until up until stopAt has been reached. It is
// imperative that the provided stopAt is within the interval of the
// series frontier.
//
// Upon completion or error, the last time at which the processor
// finished shall be emitted in addition to any errors.
Apply(sampleIterator leveldb.Iterator, samplesPersistence raw.Persistence, stopAt clientmodel.Timestamp, fingerprint *clientmodel.Fingerprint) (lastCurated clientmodel.Timestamp, err error)
// Close reaps all of the underlying system resources associated with
// this processor.
Close()
}
// CompactionProcessor combines sparse values in the database together such that
// at least MinimumGroupSize-sized chunks are grouped together. It implements
// the Processor interface.
type CompactionProcessor struct {
maximumMutationPoolBatch int
minimumGroupSize int
// signature is the byte representation of the CompactionProcessor's
// settings, used for purely memoization purposes across an instance.
signature []byte
dtoSampleKeys *dtoSampleKeyList
sampleKeys *sampleKeyList
}
// Name implements the Processor interface. It returns
// "io.prometheus.CompactionProcessorDefinition".
func (p *CompactionProcessor) Name() string {
return "io.prometheus.CompactionProcessorDefinition"
}
// Signature implements the Processor interface.
func (p *CompactionProcessor) Signature() []byte {
if len(p.signature) == 0 {
out, err := proto.Marshal(&dto.CompactionProcessorDefinition{
MinimumGroupSize: proto.Uint32(uint32(p.minimumGroupSize)),
})
if err != nil {
panic(err)
}
p.signature = out
}
return p.signature
}
func (p *CompactionProcessor) String() string {
return fmt.Sprintf("compactionProcessor for minimum group size %d", p.minimumGroupSize)
}
// Apply implements the Processor interface.
func (p *CompactionProcessor) Apply(sampleIterator leveldb.Iterator, samplesPersistence raw.Persistence, stopAt clientmodel.Timestamp, fingerprint *clientmodel.Fingerprint) (lastCurated clientmodel.Timestamp, err error) {
var pendingBatch raw.Batch
defer func() {
if pendingBatch != nil {
pendingBatch.Close()
}
}()
var pendingMutations = 0
var pendingSamples metric.Values
var unactedSamples metric.Values
var lastTouchedTime clientmodel.Timestamp
var keyDropped bool
sampleKey, _ := p.sampleKeys.Get()
defer p.sampleKeys.Give(sampleKey)
sampleKeyDto, _ := p.dtoSampleKeys.Get()
defer p.dtoSampleKeys.Give(sampleKeyDto)
if err = sampleIterator.Key(sampleKeyDto); err != nil {
return
}
sampleKey.Load(sampleKeyDto)
unactedSamples = unmarshalValues(sampleIterator.RawValue(), nil)
for lastCurated.Before(stopAt) && lastTouchedTime.Before(stopAt) && sampleKey.Fingerprint.Equal(fingerprint) {
switch {
// Furnish a new pending batch operation if none is available.
case pendingBatch == nil:
pendingBatch = leveldb.NewBatch()
// If there are no sample values to extract from the datastore, let's
// continue extracting more values to use. We know that the time.Before()
// block would prevent us from going into unsafe territory.
case len(unactedSamples) == 0:
if !sampleIterator.Next() {
return lastCurated, fmt.Errorf("illegal condition: invalid iterator on continuation")
}
keyDropped = false
if err = sampleIterator.Key(sampleKeyDto); err != nil {
return
}
sampleKey.Load(sampleKeyDto)
if !sampleKey.Fingerprint.Equal(fingerprint) {
break
}
unactedSamples = unmarshalValues(sampleIterator.RawValue(), nil)
// If the number of pending mutations exceeds the allowed batch amount,
// commit to disk and delete the batch. A new one will be recreated if
// necessary.
case pendingMutations >= p.maximumMutationPoolBatch:
err = samplesPersistence.Commit(pendingBatch)
if err != nil {
return
}
pendingMutations = 0
pendingBatch.Close()
pendingBatch = nil
case len(pendingSamples) == 0 && len(unactedSamples) >= p.minimumGroupSize:
lastTouchedTime = unactedSamples[len(unactedSamples)-1].Timestamp
unactedSamples = metric.Values{}
case len(pendingSamples)+len(unactedSamples) < p.minimumGroupSize:
if !keyDropped {
k := &dto.SampleKey{}
sampleKey.Dump(k)
pendingBatch.Drop(k)
keyDropped = true
}
pendingSamples = append(pendingSamples, unactedSamples...)
lastTouchedTime = unactedSamples[len(unactedSamples)-1].Timestamp
unactedSamples = metric.Values{}
pendingMutations++
// If the number of pending writes equals the target group size
case len(pendingSamples) == p.minimumGroupSize:
k := &dto.SampleKey{}
newSampleKey := buildSampleKey(fingerprint, pendingSamples)
newSampleKey.Dump(k)
b := marshalValues(pendingSamples, nil)
pendingBatch.PutRaw(k, b)
pendingMutations++
lastCurated = newSampleKey.FirstTimestamp
if len(unactedSamples) > 0 {
if !keyDropped {
sampleKey.Dump(k)
pendingBatch.Drop(k)
keyDropped = true
}
if len(unactedSamples) > p.minimumGroupSize {
pendingSamples = unactedSamples[:p.minimumGroupSize]
unactedSamples = unactedSamples[p.minimumGroupSize:]
lastTouchedTime = unactedSamples[len(unactedSamples)-1].Timestamp
} else {
pendingSamples = unactedSamples
lastTouchedTime = pendingSamples[len(pendingSamples)-1].Timestamp
unactedSamples = metric.Values{}
}
}
case len(pendingSamples)+len(unactedSamples) >= p.minimumGroupSize:
if !keyDropped {
k := &dto.SampleKey{}
sampleKey.Dump(k)
pendingBatch.Drop(k)
keyDropped = true
}
remainder := p.minimumGroupSize - len(pendingSamples)
pendingSamples = append(pendingSamples, unactedSamples[:remainder]...)
unactedSamples = unactedSamples[remainder:]
if len(unactedSamples) == 0 {
lastTouchedTime = pendingSamples[len(pendingSamples)-1].Timestamp
} else {
lastTouchedTime = unactedSamples[len(unactedSamples)-1].Timestamp
}
pendingMutations++
default:
err = fmt.Errorf("unhandled processing case")
}
}
if len(unactedSamples) > 0 || len(pendingSamples) > 0 {
pendingSamples = append(pendingSamples, unactedSamples...)
k := &dto.SampleKey{}
newSampleKey := buildSampleKey(fingerprint, pendingSamples)
newSampleKey.Dump(k)
b := marshalValues(pendingSamples, nil)
pendingBatch.PutRaw(k, b)
pendingSamples = metric.Values{}
pendingMutations++
lastCurated = newSampleKey.FirstTimestamp
}
// This is not deferred due to the off-chance that a pre-existing commit
// failed.
if pendingBatch != nil && pendingMutations > 0 {
err = samplesPersistence.Commit(pendingBatch)
if err != nil {
return
}
}
return
}
// Close implements the Processor interface.
func (p *CompactionProcessor) Close() {
p.dtoSampleKeys.Close()
p.sampleKeys.Close()
}
// CompactionProcessorOptions are used for connstruction of a
// CompactionProcessor.
type CompactionProcessorOptions struct {
// MaximumMutationPoolBatch represents approximately the largest pending
// batch of mutation operations for the database before pausing to
// commit before resumption.
//
// A reasonable value would be (MinimumGroupSize * 2) + 1.
MaximumMutationPoolBatch int
// MinimumGroupSize represents the smallest allowed sample chunk size in the
// database.
MinimumGroupSize int
}
// NewCompactionProcessor returns a CompactionProcessor ready to use.
func NewCompactionProcessor(o *CompactionProcessorOptions) *CompactionProcessor {
return &CompactionProcessor{
maximumMutationPoolBatch: o.MaximumMutationPoolBatch,
minimumGroupSize: o.MinimumGroupSize,
dtoSampleKeys: newDtoSampleKeyList(10),
sampleKeys: newSampleKeyList(10),
}
}
// DeletionProcessor deletes sample blocks older than a defined value. It
// implements the Processor interface.
type DeletionProcessor struct {
maximumMutationPoolBatch int
// signature is the byte representation of the DeletionProcessor's settings,
// used for purely memoization purposes across an instance.
signature []byte
dtoSampleKeys *dtoSampleKeyList
sampleKeys *sampleKeyList
}
// Name implements the Processor interface. It returns
// "io.prometheus.DeletionProcessorDefinition".
func (p *DeletionProcessor) Name() string {
return "io.prometheus.DeletionProcessorDefinition"
}
// Signature implements the Processor interface.
func (p *DeletionProcessor) Signature() []byte {
if len(p.signature) == 0 {
out, err := proto.Marshal(&dto.DeletionProcessorDefinition{})
if err != nil {
panic(err)
}
p.signature = out
}
return p.signature
}
func (p *DeletionProcessor) String() string {
return "deletionProcessor"
}
// Apply implements the Processor interface.
func (p *DeletionProcessor) Apply(sampleIterator leveldb.Iterator, samplesPersistence raw.Persistence, stopAt clientmodel.Timestamp, fingerprint *clientmodel.Fingerprint) (lastCurated clientmodel.Timestamp, err error) {
var pendingBatch raw.Batch
defer func() {
if pendingBatch != nil {
pendingBatch.Close()
}
}()
sampleKeyDto, _ := p.dtoSampleKeys.Get()
defer p.dtoSampleKeys.Give(sampleKeyDto)
sampleKey, _ := p.sampleKeys.Get()
defer p.sampleKeys.Give(sampleKey)
if err = sampleIterator.Key(sampleKeyDto); err != nil {
return
}
sampleKey.Load(sampleKeyDto)
sampleValues := unmarshalValues(sampleIterator.RawValue(), nil)
pendingMutations := 0
for lastCurated.Before(stopAt) && sampleKey.Fingerprint.Equal(fingerprint) {
switch {
// Furnish a new pending batch operation if none is available.
case pendingBatch == nil:
pendingBatch = leveldb.NewBatch()
// If there are no sample values to extract from the datastore,
// let's continue extracting more values to use. We know that
// the time.Before() block would prevent us from going into
// unsafe territory.
case len(sampleValues) == 0:
if !sampleIterator.Next() {
return lastCurated, fmt.Errorf("illegal condition: invalid iterator on continuation")
}
if err = sampleIterator.Key(sampleKeyDto); err != nil {
return
}
sampleKey.Load(sampleKeyDto)
sampleValues = unmarshalValues(sampleIterator.RawValue(), nil)
// If the number of pending mutations exceeds the allowed batch
// amount, commit to disk and delete the batch. A new one will
// be recreated if necessary.
case pendingMutations >= p.maximumMutationPoolBatch:
err = samplesPersistence.Commit(pendingBatch)
if err != nil {
return
}
pendingMutations = 0
pendingBatch.Close()
pendingBatch = nil
case !sampleKey.MayContain(stopAt):
k := &dto.SampleKey{}
sampleKey.Dump(k)
pendingBatch.Drop(k)
lastCurated = sampleKey.LastTimestamp
sampleValues = metric.Values{}
pendingMutations++
case sampleKey.MayContain(stopAt):
k := &dto.SampleKey{}
sampleKey.Dump(k)
pendingBatch.Drop(k)
pendingMutations++
sampleValues = sampleValues.TruncateBefore(stopAt)
if len(sampleValues) > 0 {
k := &dto.SampleKey{}
sampleKey = buildSampleKey(fingerprint, sampleValues)
sampleKey.Dump(k)
lastCurated = sampleKey.FirstTimestamp
v := marshalValues(sampleValues, nil)
pendingBatch.PutRaw(k, v)
pendingMutations++
} else {
lastCurated = sampleKey.LastTimestamp
}
default:
err = fmt.Errorf("unhandled processing case")
}
}
// This is not deferred due to the off-chance that a pre-existing commit
// failed.
if pendingBatch != nil && pendingMutations > 0 {
err = samplesPersistence.Commit(pendingBatch)
if err != nil {
return
}
}
return
}
// Close implements the Processor interface.
func (p *DeletionProcessor) Close() {
p.dtoSampleKeys.Close()
p.sampleKeys.Close()
}
// DeletionProcessorOptions are used for connstruction of a DeletionProcessor.
type DeletionProcessorOptions struct {
// MaximumMutationPoolBatch represents approximately the largest pending
// batch of mutation operations for the database before pausing to
// commit before resumption.
MaximumMutationPoolBatch int
}
// NewDeletionProcessor returns a DeletionProcessor ready to use.
func NewDeletionProcessor(o *DeletionProcessorOptions) *DeletionProcessor {
return &DeletionProcessor{
maximumMutationPoolBatch: o.MaximumMutationPoolBatch,
dtoSampleKeys: newDtoSampleKeyList(10),
sampleKeys: newSampleKeyList(10),
}
}