prometheus/storage/local/storage.go
beorn7 434ab2a6a3 storage: Evict chunks and calculate persistence pressure based on target heap size
This is a fairly easy attempt to dynamically evict chunks based on the
heap size. A target heap size has to be set as a command line flage,
so that users can essentially say "utilize 4GiB of RAM, and please
don't OOM".

The -storage.local.max-chunks-to-persist and
-storage.local.memory-chunks flags are deprecated by this
change. Backwards compatibility is provided by ignoring
-storage.local.max-chunks-to-persist and use
-storage.local.memory-chunks to set the new
-storage.local.target-heap-size to a reasonable (and conservative)
value (both with a warning).

This also makes the metrics intstrumentation more consistent (in
naming and implementation) and cleans up a few quirks in the tests.

Answers to anticipated comments:

There is a chance that Go 1.9 will allow programs better control over
the Go memory management. I don't expect those changes to be in
contradiction with the approach here, but I do expect them to
complement them and allow them to be more precise and controlled. In
any case, once those Go changes are available, this code has to be
revisted.

One might be tempted to let the user specify an estimated value for
the RSS usage, and then internall set a target heap size of a certain
fraction of that. (In my experience, 2/3 is a fairly safe bet.)
However, investigations have shown that RSS size and its relation to
the heap size is really really complicated. It depends on so many
factors that I wouldn't even start listing them in a commit
description. It depends on many circumstances and not at least on the
risk trade-off of each individual user between RAM utilization and
probability of OOMing during a RAM usage peak. To not add even more to
the confusion, we need to stick to the well-defined number we also use
in the targeting here, the sum of the sizes of heap objects.
2017-03-27 14:33:50 +02:00

1956 lines
61 KiB
Go

// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package local contains the local time series storage used by Prometheus.
package local
import (
"container/list"
"errors"
"fmt"
"runtime"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/common/log"
"github.com/prometheus/common/model"
"golang.org/x/net/context"
"github.com/prometheus/prometheus/storage/local/chunk"
"github.com/prometheus/prometheus/storage/metric"
)
const (
evictRequestsCap = 1024
quarantineRequestsCap = 1024
// See waitForNextFP.
fpMaxSweepTime = 6 * time.Hour
fpMaxWaitDuration = 10 * time.Second
// See handleEvictList. This should be clearly shorter than the usual CG
// interval. On the other hand, each evict check calls ReadMemStats,
// which involves stopping the world (at least up to Go1.8). Hence,
// don't just set this to a very short interval.
evictInterval = time.Second
// Constants to control the hysteresis of entering and leaving "rushed
// mode". In rushed mode, the dirty series count is ignored for
// checkpointing, series are maintained as frequently as possible, and
// series files are not synced if the adaptive sync strategy is used.
persintenceUrgencyScoreForEnteringRushedMode = 0.8
persintenceUrgencyScoreForLeavingRushedMode = 0.7
// This factor times -storage.local.memory-chunks is the number of
// memory chunks we tolerate before throttling the storage. It is also a
// basis for calculating the persistenceUrgencyScore.
toleranceFactorMemChunks = 1.1
// This factor times -storage.local.max-chunks-to-persist is the minimum
// required number of chunks waiting for persistence before the number
// of chunks in memory may influence the persistenceUrgencyScore. (In
// other words: if there are no chunks to persist, it doesn't help chunk
// eviction if we speed up persistence.)
factorMinChunksToPersist = 0.2
// Threshold for when to stop using LabelMatchers to retrieve and
// intersect fingerprints. The rationale here is that looking up more
// fingerprints has diminishing returns if we already have narrowed down
// the possible fingerprints significantly. It is then easier to simply
// lookup the metrics for all the fingerprints and directly compare them
// to the matchers. Since a fingerprint lookup for an Equal matcher is
// much less expensive, there is a lower threshold for that case.
// TODO(beorn7): These numbers need to be tweaked, probably a bit lower.
// 5x higher numbers have resulted in slightly worse performance in a
// real-life production scenario.
fpEqualMatchThreshold = 1000
fpOtherMatchThreshold = 10000
)
type quarantineRequest struct {
fp model.Fingerprint
metric model.Metric
reason error
}
// SyncStrategy is an enum to select a sync strategy for series files.
type SyncStrategy int
// String implements flag.Value.
func (ss SyncStrategy) String() string {
switch ss {
case Adaptive:
return "adaptive"
case Always:
return "always"
case Never:
return "never"
}
return "<unknown>"
}
// Set implements flag.Value.
func (ss *SyncStrategy) Set(s string) error {
switch s {
case "adaptive":
*ss = Adaptive
case "always":
*ss = Always
case "never":
*ss = Never
default:
return fmt.Errorf("invalid sync strategy: %s", s)
}
return nil
}
// Possible values for SyncStrategy.
const (
_ SyncStrategy = iota
Never
Always
Adaptive
)
// A syncStrategy is a function that returns whether series files should be
// synced or not. It does not need to be goroutine safe.
type syncStrategy func() bool
// A MemorySeriesStorage manages series in memory over time, while also
// interfacing with a persistence layer to make time series data persistent
// across restarts and evictable from memory.
type MemorySeriesStorage struct {
// archiveHighWatermark, chunksToPersist, persistUrgency have to be aligned for atomic operations.
archiveHighWatermark model.Time // No archived series has samples after this time.
numChunksToPersist int64 // The number of chunks waiting for persistence.
persistUrgency int32 // Persistence urgency score * 1000, int32 allows atomic operations.
rushed bool // Whether the storage is in rushed mode.
rushedMtx sync.Mutex // Protects rushed.
lastNumGC uint32 // To detect if a GC cycle has run.
throttled chan struct{} // This chan is sent to whenever NeedsThrottling() returns true (for logging).
fpLocker *fingerprintLocker
fpToSeries *seriesMap
options *MemorySeriesStorageOptions
loopStopping, loopStopped chan struct{}
logThrottlingStopped chan struct{}
targetHeapSize uint64
dropAfter time.Duration
headChunkTimeout time.Duration
checkpointInterval time.Duration
checkpointDirtySeriesLimit int
persistence *persistence
mapper *fpMapper
evictList *list.List
evictRequests chan chunk.EvictRequest
evictStopping, evictStopped chan struct{}
quarantineRequests chan quarantineRequest
quarantineStopping, quarantineStopped chan struct{}
persistErrors prometheus.Counter
queuedChunksToPersist prometheus.Counter
chunksToPersist prometheus.GaugeFunc
memorySeries prometheus.Gauge
headChunks prometheus.Gauge
dirtySeries prometheus.Gauge
seriesOps *prometheus.CounterVec
ingestedSamples prometheus.Counter
discardedSamples *prometheus.CounterVec
nonExistentSeriesMatches prometheus.Counter
memChunks prometheus.GaugeFunc
maintainSeriesDuration *prometheus.SummaryVec
persistenceUrgencyScore prometheus.GaugeFunc
rushedMode prometheus.GaugeFunc
targetHeapSizeBytes prometheus.GaugeFunc
}
// MemorySeriesStorageOptions contains options needed by
// NewMemorySeriesStorage. It is not safe to leave any of those at their zero
// values.
type MemorySeriesStorageOptions struct {
TargetHeapSize uint64 // Desired maximum heap size.
PersistenceStoragePath string // Location of persistence files.
PersistenceRetentionPeriod time.Duration // Chunks at least that old are dropped.
HeadChunkTimeout time.Duration // Head chunks idle for at least that long may be closed.
CheckpointInterval time.Duration // How often to checkpoint the series map and head chunks.
CheckpointDirtySeriesLimit int // How many dirty series will trigger an early checkpoint.
Dirty bool // Force the storage to consider itself dirty on startup.
PedanticChecks bool // If dirty, perform crash-recovery checks on each series file.
SyncStrategy SyncStrategy // Which sync strategy to apply to series files.
MinShrinkRatio float64 // Minimum ratio a series file has to shrink during truncation.
NumMutexes int // Number of mutexes used for stochastic fingerprint locking.
}
// NewMemorySeriesStorage returns a newly allocated Storage. Storage.Serve still
// has to be called to start the storage.
func NewMemorySeriesStorage(o *MemorySeriesStorageOptions) *MemorySeriesStorage {
s := &MemorySeriesStorage{
fpLocker: newFingerprintLocker(o.NumMutexes),
options: o,
loopStopping: make(chan struct{}),
loopStopped: make(chan struct{}),
logThrottlingStopped: make(chan struct{}),
throttled: make(chan struct{}, 1),
targetHeapSize: o.TargetHeapSize,
dropAfter: o.PersistenceRetentionPeriod,
headChunkTimeout: o.HeadChunkTimeout,
checkpointInterval: o.CheckpointInterval,
checkpointDirtySeriesLimit: o.CheckpointDirtySeriesLimit,
archiveHighWatermark: model.Now().Add(-o.HeadChunkTimeout),
evictList: list.New(),
evictRequests: make(chan chunk.EvictRequest, evictRequestsCap),
evictStopping: make(chan struct{}),
evictStopped: make(chan struct{}),
quarantineRequests: make(chan quarantineRequest, quarantineRequestsCap),
quarantineStopping: make(chan struct{}),
quarantineStopped: make(chan struct{}),
persistErrors: prometheus.NewCounter(prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "persist_errors_total",
Help: "The total number of errors while persisting chunks.",
}),
queuedChunksToPersist: prometheus.NewCounter(prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "queued_chunks_to_persist_total",
Help: "The total number of chunks queued for persistence.",
}),
memorySeries: prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "memory_series",
Help: "The current number of series in memory.",
}),
headChunks: prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "open_head_chunks",
Help: "The current number of open head chunks.",
}),
dirtySeries: prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "memory_dirty_series",
Help: "The current number of series that would require a disk seek during crash recovery.",
}),
seriesOps: prometheus.NewCounterVec(
prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "series_ops_total",
Help: "The total number of series operations by their type.",
},
[]string{opTypeLabel},
),
ingestedSamples: prometheus.NewCounter(prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "ingested_samples_total",
Help: "The total number of samples ingested.",
}),
discardedSamples: prometheus.NewCounterVec(
prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "out_of_order_samples_total",
Help: "The total number of samples that were discarded because their timestamps were at or before the last received sample for a series.",
},
[]string{discardReasonLabel},
),
nonExistentSeriesMatches: prometheus.NewCounter(prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "non_existent_series_matches_total",
Help: "How often a non-existent series was referred to during label matching or chunk preloading. This is an indication of outdated label indexes.",
}),
memChunks: prometheus.NewGaugeFunc(
prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "memory_chunks",
Help: "The current number of chunks in memory. The number does not include cloned chunks (i.e. chunks without a descriptor).",
},
func() float64 { return float64(atomic.LoadInt64(&chunk.NumMemChunks)) },
),
maintainSeriesDuration: prometheus.NewSummaryVec(
prometheus.SummaryOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "maintain_series_duration_seconds",
Help: "The duration in seconds it took to perform maintenance on a series.",
},
[]string{seriesLocationLabel},
),
}
s.chunksToPersist = prometheus.NewGaugeFunc(
prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "chunks_to_persist",
Help: "The current number of chunks waiting for persistence.",
},
func() float64 {
return float64(s.getNumChunksToPersist())
},
)
s.rushedMode = prometheus.NewGaugeFunc(
prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "rushed_mode",
Help: "1 if the storage is in rushed mode, 0 otherwise.",
},
func() float64 {
s.rushedMtx.Lock()
defer s.rushedMtx.Unlock()
if s.rushed {
return 1
}
return 0
},
)
s.persistenceUrgencyScore = prometheus.NewGaugeFunc(
prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "persistence_urgency_score",
Help: "A score of urgency to persist chunks, 0 is least urgent, 1 most.",
},
func() float64 {
score, _ := s.getPersistenceUrgencyScore()
return score
},
)
s.targetHeapSizeBytes = prometheus.NewGaugeFunc(
prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "target_heap_size_bytes",
Help: "The configured target heap size in bytes.",
},
func() float64 {
return float64(s.targetHeapSize)
},
)
// Initialize metric vectors.
// TODO(beorn7): Rework once we have a utility function for it in client_golang.
s.discardedSamples.WithLabelValues(outOfOrderTimestamp)
s.discardedSamples.WithLabelValues(duplicateSample)
s.maintainSeriesDuration.WithLabelValues(maintainInMemory)
s.maintainSeriesDuration.WithLabelValues(maintainArchived)
s.seriesOps.WithLabelValues(create)
s.seriesOps.WithLabelValues(archive)
s.seriesOps.WithLabelValues(unarchive)
s.seriesOps.WithLabelValues(memoryPurge)
s.seriesOps.WithLabelValues(archivePurge)
s.seriesOps.WithLabelValues(requestedPurge)
s.seriesOps.WithLabelValues(memoryMaintenance)
s.seriesOps.WithLabelValues(archiveMaintenance)
s.seriesOps.WithLabelValues(completedQurantine)
s.seriesOps.WithLabelValues(droppedQuarantine)
s.seriesOps.WithLabelValues(failedQuarantine)
return s
}
// Start implements Storage.
func (s *MemorySeriesStorage) Start() (err error) {
var syncStrategy syncStrategy
switch s.options.SyncStrategy {
case Never:
syncStrategy = func() bool { return false }
case Always:
syncStrategy = func() bool { return true }
case Adaptive:
syncStrategy = func() bool {
_, rushed := s.getPersistenceUrgencyScore()
return !rushed
}
default:
panic("unknown sync strategy")
}
var p *persistence
p, err = newPersistence(
s.options.PersistenceStoragePath,
s.options.Dirty, s.options.PedanticChecks,
syncStrategy,
s.options.MinShrinkRatio,
)
if err != nil {
return err
}
s.persistence = p
// Persistence must start running before loadSeriesMapAndHeads() is called.
go s.persistence.run()
defer func() {
if err != nil {
if e := p.close(); e != nil {
log.Errorln("Error closing persistence:", e)
}
}
}()
log.Info("Loading series map and head chunks...")
s.fpToSeries, s.numChunksToPersist, err = p.loadSeriesMapAndHeads()
for fp := range s.fpToSeries.fpIter() {
if series, ok := s.fpToSeries.get(fp); ok {
if !series.headChunkClosed {
s.headChunks.Inc()
}
}
}
if err != nil {
return err
}
log.Infof("%d series loaded.", s.fpToSeries.length())
s.memorySeries.Set(float64(s.fpToSeries.length()))
s.mapper, err = newFPMapper(s.fpToSeries, p)
if err != nil {
return err
}
go s.handleEvictList()
go s.handleQuarantine()
go s.logThrottling()
go s.loop()
return nil
}
// Stop implements Storage.
func (s *MemorySeriesStorage) Stop() error {
log.Info("Stopping local storage...")
log.Info("Stopping maintenance loop...")
close(s.loopStopping)
<-s.loopStopped
log.Info("Stopping series quarantining...")
close(s.quarantineStopping)
<-s.quarantineStopped
log.Info("Stopping chunk eviction...")
close(s.evictStopping)
<-s.evictStopped
// One final checkpoint of the series map and the head chunks.
if err := s.persistence.checkpointSeriesMapAndHeads(s.fpToSeries, s.fpLocker); err != nil {
return err
}
if err := s.mapper.checkpoint(); err != nil {
return err
}
if err := s.persistence.close(); err != nil {
return err
}
log.Info("Local storage stopped.")
return nil
}
type memorySeriesStorageQuerier struct {
*MemorySeriesStorage
}
func (memorySeriesStorageQuerier) Close() error {
return nil
}
// Querier implements the storage interface.
func (s *MemorySeriesStorage) Querier() (Querier, error) {
return memorySeriesStorageQuerier{s}, nil
}
// WaitForIndexing implements Storage.
func (s *MemorySeriesStorage) WaitForIndexing() {
s.persistence.waitForIndexing()
}
// LastSampleForLabelMatchers implements Storage.
func (s *MemorySeriesStorage) LastSampleForLabelMatchers(_ context.Context, cutoff model.Time, matcherSets ...metric.LabelMatchers) (model.Vector, error) {
mergedFPs := map[model.Fingerprint]struct{}{}
for _, matchers := range matcherSets {
fps, err := s.fpsForLabelMatchers(cutoff, model.Latest, matchers...)
if err != nil {
return nil, err
}
for fp := range fps {
mergedFPs[fp] = struct{}{}
}
}
res := make(model.Vector, 0, len(mergedFPs))
for fp := range mergedFPs {
s.fpLocker.Lock(fp)
series, ok := s.fpToSeries.get(fp)
if !ok {
// A series could have disappeared between resolving label matchers and here.
s.fpLocker.Unlock(fp)
continue
}
sp := series.lastSamplePair()
res = append(res, &model.Sample{
Metric: series.metric,
Value: sp.Value,
Timestamp: sp.Timestamp,
})
s.fpLocker.Unlock(fp)
}
return res, nil
}
// boundedIterator wraps a SeriesIterator and does not allow fetching
// data from earlier than the configured start time.
type boundedIterator struct {
it SeriesIterator
start model.Time
}
// ValueAtOrBeforeTime implements the SeriesIterator interface.
func (bit *boundedIterator) ValueAtOrBeforeTime(ts model.Time) model.SamplePair {
if ts < bit.start {
return model.ZeroSamplePair
}
return bit.it.ValueAtOrBeforeTime(ts)
}
// RangeValues implements the SeriesIterator interface.
func (bit *boundedIterator) RangeValues(interval metric.Interval) []model.SamplePair {
if interval.NewestInclusive < bit.start {
return []model.SamplePair{}
}
if interval.OldestInclusive < bit.start {
interval.OldestInclusive = bit.start
}
return bit.it.RangeValues(interval)
}
// Metric implements SeriesIterator.
func (bit *boundedIterator) Metric() metric.Metric {
return bit.it.Metric()
}
// Close implements SeriesIterator.
func (bit *boundedIterator) Close() {
bit.it.Close()
}
// QueryRange implements Storage.
func (s *MemorySeriesStorage) QueryRange(_ context.Context, from, through model.Time, matchers ...*metric.LabelMatcher) ([]SeriesIterator, error) {
if through.Before(from) {
// In that case, nothing will match.
return nil, nil
}
fpSeriesPairs, err := s.seriesForLabelMatchers(from, through, matchers...)
if err != nil {
return nil, err
}
iterators := make([]SeriesIterator, 0, len(fpSeriesPairs))
for _, pair := range fpSeriesPairs {
it := s.preloadChunksForRange(pair, from, through)
iterators = append(iterators, it)
}
return iterators, nil
}
// QueryInstant implements Storage.
func (s *MemorySeriesStorage) QueryInstant(_ context.Context, ts model.Time, stalenessDelta time.Duration, matchers ...*metric.LabelMatcher) ([]SeriesIterator, error) {
if stalenessDelta < 0 {
panic("negative staleness delta")
}
from := ts.Add(-stalenessDelta)
through := ts
fpSeriesPairs, err := s.seriesForLabelMatchers(from, through, matchers...)
if err != nil {
return nil, err
}
iterators := make([]SeriesIterator, 0, len(fpSeriesPairs))
for _, pair := range fpSeriesPairs {
it := s.preloadChunksForInstant(pair, from, through)
iterators = append(iterators, it)
}
return iterators, nil
}
// fingerprintsForLabelPair returns the fingerprints with the given
// LabelPair. If intersectWith is non-nil, the method will only return
// fingerprints that are also contained in intersectsWith. If mergeWith is
// non-nil, the found fingerprints are added to the given map. The returned map
// is the same as the given one.
func (s *MemorySeriesStorage) fingerprintsForLabelPair(
pair model.LabelPair,
mergeWith map[model.Fingerprint]struct{},
intersectWith map[model.Fingerprint]struct{},
) map[model.Fingerprint]struct{} {
if mergeWith == nil {
mergeWith = map[model.Fingerprint]struct{}{}
}
for _, fp := range s.persistence.fingerprintsForLabelPair(pair) {
if intersectWith == nil {
mergeWith[fp] = struct{}{}
continue
}
if _, ok := intersectWith[fp]; ok {
mergeWith[fp] = struct{}{}
}
}
return mergeWith
}
// MetricsForLabelMatchers implements Storage.
func (s *MemorySeriesStorage) MetricsForLabelMatchers(
_ context.Context,
from, through model.Time,
matcherSets ...metric.LabelMatchers,
) ([]metric.Metric, error) {
fpToMetric := map[model.Fingerprint]metric.Metric{}
for _, matchers := range matcherSets {
metrics, err := s.metricsForLabelMatchers(from, through, matchers...)
if err != nil {
return nil, err
}
for fp, m := range metrics {
fpToMetric[fp] = m
}
}
metrics := make([]metric.Metric, 0, len(fpToMetric))
for _, m := range fpToMetric {
metrics = append(metrics, m)
}
return metrics, nil
}
// candidateFPsForLabelMatchers returns candidate FPs for given matchers and remaining matchers to be checked.
func (s *MemorySeriesStorage) candidateFPsForLabelMatchers(
matchers ...*metric.LabelMatcher,
) (map[model.Fingerprint]struct{}, []*metric.LabelMatcher, error) {
sort.Sort(metric.LabelMatchers(matchers))
if len(matchers) == 0 || matchers[0].MatchesEmptyString() {
// No matchers at all or even the best matcher matches the empty string.
return nil, nil, nil
}
var (
matcherIdx int
candidateFPs map[model.Fingerprint]struct{}
)
// Equal matchers.
for ; matcherIdx < len(matchers) && (candidateFPs == nil || len(candidateFPs) > fpEqualMatchThreshold); matcherIdx++ {
m := matchers[matcherIdx]
if m.Type != metric.Equal || m.MatchesEmptyString() {
break
}
candidateFPs = s.fingerprintsForLabelPair(
model.LabelPair{
Name: m.Name,
Value: m.Value,
},
nil,
candidateFPs,
)
if len(candidateFPs) == 0 {
return nil, nil, nil
}
}
// Other matchers.
for ; matcherIdx < len(matchers) && (candidateFPs == nil || len(candidateFPs) > fpOtherMatchThreshold); matcherIdx++ {
m := matchers[matcherIdx]
if m.MatchesEmptyString() {
break
}
lvs, err := s.LabelValuesForLabelName(context.TODO(), m.Name)
if err != nil {
return nil, nil, err
}
lvs = m.Filter(lvs)
if len(lvs) == 0 {
return nil, nil, nil
}
fps := map[model.Fingerprint]struct{}{}
for _, lv := range lvs {
s.fingerprintsForLabelPair(
model.LabelPair{
Name: m.Name,
Value: lv,
},
fps,
candidateFPs,
)
}
candidateFPs = fps
if len(candidateFPs) == 0 {
return nil, nil, nil
}
}
return candidateFPs, matchers[matcherIdx:], nil
}
func (s *MemorySeriesStorage) seriesForLabelMatchers(
from, through model.Time,
matchers ...*metric.LabelMatcher,
) ([]fingerprintSeriesPair, error) {
candidateFPs, matchersToCheck, err := s.candidateFPsForLabelMatchers(matchers...)
if err != nil {
return nil, err
}
result := []fingerprintSeriesPair{}
FPLoop:
for fp := range candidateFPs {
s.fpLocker.Lock(fp)
series := s.seriesForRange(fp, from, through)
s.fpLocker.Unlock(fp)
if series == nil {
continue FPLoop
}
for _, m := range matchersToCheck {
if !m.Match(series.metric[m.Name]) {
continue FPLoop
}
}
result = append(result, fingerprintSeriesPair{fp, series})
}
return result, nil
}
func (s *MemorySeriesStorage) fpsForLabelMatchers(
from, through model.Time,
matchers ...*metric.LabelMatcher,
) (map[model.Fingerprint]struct{}, error) {
candidateFPs, matchersToCheck, err := s.candidateFPsForLabelMatchers(matchers...)
if err != nil {
return nil, err
}
FPLoop:
for fp := range candidateFPs {
s.fpLocker.Lock(fp)
met, _, ok := s.metricForRange(fp, from, through)
s.fpLocker.Unlock(fp)
if !ok {
delete(candidateFPs, fp)
continue FPLoop
}
for _, m := range matchersToCheck {
if !m.Match(met[m.Name]) {
delete(candidateFPs, fp)
continue FPLoop
}
}
}
return candidateFPs, nil
}
func (s *MemorySeriesStorage) metricsForLabelMatchers(
from, through model.Time,
matchers ...*metric.LabelMatcher,
) (map[model.Fingerprint]metric.Metric, error) {
candidateFPs, matchersToCheck, err := s.candidateFPsForLabelMatchers(matchers...)
if err != nil {
return nil, err
}
result := map[model.Fingerprint]metric.Metric{}
FPLoop:
for fp := range candidateFPs {
s.fpLocker.Lock(fp)
met, _, ok := s.metricForRange(fp, from, through)
s.fpLocker.Unlock(fp)
if !ok {
continue FPLoop
}
for _, m := range matchersToCheck {
if !m.Match(met[m.Name]) {
continue FPLoop
}
}
result[fp] = metric.Metric{Metric: met}
}
return result, nil
}
// metricForRange returns the metric for the given fingerprint if the
// corresponding time series has samples between 'from' and 'through', together
// with a pointer to the series if it is in memory already. For a series that
// does not have samples between 'from' and 'through', the returned bool is
// false. For an archived series that does contain samples between 'from' and
// 'through', it returns (metric, nil, true).
//
// The caller must have locked the fp.
func (s *MemorySeriesStorage) metricForRange(
fp model.Fingerprint,
from, through model.Time,
) (model.Metric, *memorySeries, bool) {
series, ok := s.fpToSeries.get(fp)
if ok {
if series.lastTime.Before(from) || series.firstTime().After(through) {
return nil, nil, false
}
return series.metric, series, true
}
// From here on, we are only concerned with archived metrics.
// If the high watermark of archived series is before 'from', we are done.
watermark := model.Time(atomic.LoadInt64((*int64)(&s.archiveHighWatermark)))
if watermark < from {
return nil, nil, false
}
if from.After(model.Earliest) || through.Before(model.Latest) {
// The range lookup is relatively cheap, so let's do it first if
// we have a chance the archived metric is not in the range.
has, first, last := s.persistence.hasArchivedMetric(fp)
if !has {
s.nonExistentSeriesMatches.Inc()
return nil, nil, false
}
if first.After(through) || last.Before(from) {
return nil, nil, false
}
}
metric, err := s.persistence.archivedMetric(fp)
if err != nil {
// archivedMetric has already flagged the storage as dirty in this case.
return nil, nil, false
}
return metric, nil, true
}
// LabelValuesForLabelName implements Storage.
func (s *MemorySeriesStorage) LabelValuesForLabelName(_ context.Context, labelName model.LabelName) (model.LabelValues, error) {
return s.persistence.labelValuesForLabelName(labelName)
}
// DropMetricsForLabelMatchers implements Storage.
func (s *MemorySeriesStorage) DropMetricsForLabelMatchers(_ context.Context, matchers ...*metric.LabelMatcher) (int, error) {
fps, err := s.fpsForLabelMatchers(model.Earliest, model.Latest, matchers...)
if err != nil {
return 0, err
}
for fp := range fps {
s.purgeSeries(fp, nil, nil)
}
return len(fps), nil
}
var (
// ErrOutOfOrderSample is returned if a sample has a timestamp before the latest
// timestamp in the series it is appended to.
ErrOutOfOrderSample = fmt.Errorf("sample timestamp out of order")
// ErrDuplicateSampleForTimestamp is returned if a sample has the same
// timestamp as the latest sample in the series it is appended to but a
// different value. (Appending an identical sample is a no-op and does
// not cause an error.)
ErrDuplicateSampleForTimestamp = fmt.Errorf("sample with repeated timestamp but different value")
)
// Append implements Storage.
func (s *MemorySeriesStorage) Append(sample *model.Sample) error {
for ln, lv := range sample.Metric {
if len(lv) == 0 {
delete(sample.Metric, ln)
}
}
rawFP := sample.Metric.FastFingerprint()
s.fpLocker.Lock(rawFP)
fp := s.mapper.mapFP(rawFP, sample.Metric)
defer func() {
s.fpLocker.Unlock(fp)
}() // Func wrapper because fp might change below.
if fp != rawFP {
// Switch locks.
s.fpLocker.Unlock(rawFP)
s.fpLocker.Lock(fp)
}
series, err := s.getOrCreateSeries(fp, sample.Metric)
if err != nil {
return err // getOrCreateSeries took care of quarantining already.
}
if sample.Timestamp == series.lastTime {
// Don't report "no-op appends", i.e. where timestamp and sample
// value are the same as for the last append, as they are a
// common occurrence when using client-side timestamps
// (e.g. Pushgateway or federation).
if sample.Timestamp == series.lastTime &&
series.lastSampleValueSet &&
sample.Value.Equal(series.lastSampleValue) {
return nil
}
s.discardedSamples.WithLabelValues(duplicateSample).Inc()
return ErrDuplicateSampleForTimestamp // Caused by the caller.
}
if sample.Timestamp < series.lastTime {
s.discardedSamples.WithLabelValues(outOfOrderTimestamp).Inc()
return ErrOutOfOrderSample // Caused by the caller.
}
completedChunksCount, err := series.add(model.SamplePair{
Value: sample.Value,
Timestamp: sample.Timestamp,
})
if err != nil {
s.quarantineSeries(fp, sample.Metric, err)
return err
}
s.ingestedSamples.Inc()
s.incNumChunksToPersist(completedChunksCount)
return nil
}
// NeedsThrottling implements Storage.
func (s *MemorySeriesStorage) NeedsThrottling() bool {
if score, _ := s.getPersistenceUrgencyScore(); score >= 1 {
select {
case s.throttled <- struct{}{}:
default: // Do nothing, signal already pending.
}
return true
}
return false
}
// logThrottling handles logging of throttled events and has to be started as a
// goroutine. It stops once s.loopStopping is closed.
//
// Logging strategy: Whenever Throttle() is called and returns true, an signal
// is sent to s.throttled. If that happens for the first time, an Error is
// logged that the storage is now throttled. As long as signals continues to be
// sent via s.throttled at least once per minute, nothing else is logged. Once
// no signal has arrived for a minute, an Info is logged that the storage is not
// throttled anymore. This resets things to the initial state, i.e. once a
// signal arrives again, the Error will be logged again.
func (s *MemorySeriesStorage) logThrottling() {
timer := time.NewTimer(time.Minute)
timer.Stop()
// Signal exit of the goroutine. Currently only needed by test code.
defer close(s.logThrottlingStopped)
for {
select {
case <-s.throttled:
if !timer.Reset(time.Minute) {
score, _ := s.getPersistenceUrgencyScore()
log.
With("urgencyScore", score).
With("chunksToPersist", s.getNumChunksToPersist()).
With("memoryChunks", atomic.LoadInt64(&chunk.NumMemChunks)).
Error("Storage needs throttling. Scrapes and rule evaluations will be skipped.")
}
case <-timer.C:
score, _ := s.getPersistenceUrgencyScore()
log.
With("urgencyScore", score).
With("chunksToPersist", s.getNumChunksToPersist()).
With("memoryChunks", atomic.LoadInt64(&chunk.NumMemChunks)).
Info("Storage does not need throttling anymore.")
case <-s.loopStopping:
return
}
}
}
func (s *MemorySeriesStorage) getOrCreateSeries(fp model.Fingerprint, m model.Metric) (*memorySeries, error) {
series, ok := s.fpToSeries.get(fp)
if !ok {
var cds []*chunk.Desc
var modTime time.Time
unarchived, err := s.persistence.unarchiveMetric(fp)
if err != nil {
log.Errorf("Error unarchiving fingerprint %v (metric %v): %v", fp, m, err)
return nil, err
}
if unarchived {
s.seriesOps.WithLabelValues(unarchive).Inc()
// We have to load chunk.Descs anyway to do anything with
// the series, so let's do it right now so that we don't
// end up with a series without any chunk.Descs for a
// while (which is confusing as it makes the series
// appear as archived or purged).
cds, err = s.loadChunkDescs(fp, 0)
if err == nil && len(cds) == 0 {
err = fmt.Errorf("unarchived fingerprint %v (metric %v) has no chunks on disk", fp, m)
}
if err != nil {
s.quarantineSeries(fp, m, err)
return nil, err
}
modTime = s.persistence.seriesFileModTime(fp)
} else {
// This was a genuinely new series, so index the metric.
s.persistence.indexMetric(fp, m)
s.seriesOps.WithLabelValues(create).Inc()
}
series, err = newMemorySeries(m, cds, modTime)
if err != nil {
s.quarantineSeries(fp, m, err)
return nil, err
}
s.fpToSeries.put(fp, series)
s.memorySeries.Inc()
if !series.headChunkClosed {
s.headChunks.Inc()
}
}
return series, nil
}
// seriesForRange is a helper method for seriesForLabelMatchers.
//
// The caller must have locked the fp.
func (s *MemorySeriesStorage) seriesForRange(
fp model.Fingerprint,
from model.Time, through model.Time,
) *memorySeries {
metric, series, ok := s.metricForRange(fp, from, through)
if !ok {
return nil
}
if series == nil {
series, _ = s.getOrCreateSeries(fp, metric)
// getOrCreateSeries took care of quarantining already, so ignore the error.
}
return series
}
func (s *MemorySeriesStorage) preloadChunksForRange(
pair fingerprintSeriesPair,
from model.Time, through model.Time,
) SeriesIterator {
fp, series := pair.fp, pair.series
if series == nil {
return nopIter
}
s.fpLocker.Lock(fp)
defer s.fpLocker.Unlock(fp)
iter, err := series.preloadChunksForRange(fp, from, through, s)
if err != nil {
s.quarantineSeries(fp, series.metric, err)
return nopIter
}
return iter
}
func (s *MemorySeriesStorage) preloadChunksForInstant(
pair fingerprintSeriesPair,
from model.Time, through model.Time,
) SeriesIterator {
fp, series := pair.fp, pair.series
if series == nil {
return nopIter
}
s.fpLocker.Lock(fp)
defer s.fpLocker.Unlock(fp)
iter, err := series.preloadChunksForInstant(fp, from, through, s)
if err != nil {
s.quarantineSeries(fp, series.metric, err)
return nopIter
}
return iter
}
func (s *MemorySeriesStorage) handleEvictList() {
// This ticker is supposed to tick at least once per GC cyle. Ideally,
// we would handle the evict list after each finished GC cycle, but I
// don't know of a way to "subscribe" to that kind of event.
ticker := time.NewTicker(evictInterval)
for {
select {
case req := <-s.evictRequests:
if req.Evict {
req.Desc.EvictListElement = s.evictList.PushBack(req.Desc)
} else {
if req.Desc.EvictListElement != nil {
s.evictList.Remove(req.Desc.EvictListElement)
req.Desc.EvictListElement = nil
}
}
case <-ticker.C:
s.maybeEvict()
case <-s.evictStopping:
// Drain evictRequests forever in a goroutine to not let
// requesters hang.
go func() {
for {
<-s.evictRequests
}
}()
ticker.Stop()
log.Info("Chunk eviction stopped.")
close(s.evictStopped)
return
}
}
}
// maybeEvict is a local helper method. Must only be called by handleEvictList.
func (s *MemorySeriesStorage) maybeEvict() {
ms := runtime.MemStats{}
runtime.ReadMemStats(&ms)
numChunksToEvict := s.calculatePersistUrgency(&ms)
if numChunksToEvict <= 0 {
return
}
chunkDescsToEvict := make([]*chunk.Desc, numChunksToEvict)
for i := range chunkDescsToEvict {
e := s.evictList.Front()
if e == nil {
break
}
cd := e.Value.(*chunk.Desc)
cd.EvictListElement = nil
chunkDescsToEvict[i] = cd
s.evictList.Remove(e)
}
// Do the actual eviction in a goroutine as we might otherwise deadlock,
// in the following way: A chunk was Unpinned completely and therefore
// scheduled for eviction. At the time we actually try to evict it,
// another goroutine is pinning the chunk. The pinning goroutine has
// currently locked the chunk and tries to send the evict request (to
// remove the chunk from the evict list) to the evictRequests
// channel. The send blocks because evictRequests is full. However, the
// goroutine that is supposed to empty the channel is waiting for the
// Chunk.Desc lock to try to evict the chunk.
go func() {
for _, cd := range chunkDescsToEvict {
if cd == nil {
break
}
cd.MaybeEvict()
// We don't care if the eviction succeeds. If the chunk
// was pinned in the meantime, it will be added to the
// evict list once it gets Unpinned again.
}
}()
}
// calculatePersistUrgency calculates and sets s.persistUrgency. Based on the
// calculation, it returns the number of chunks to evict. The runtime.MemStats
// are passed in here for testability.
//
// The persist urgency is calculated by the following formula:
//
// n(toPersist) MAX( h(nextGC), h(current) )
// p = MIN( 1, --------------------------- * ---------------------------- )
// n(toPersist) + n(evictable) h(target)
//
// where:
//
// n(toPersist): Number of chunks waiting for persistence.
// n(evictable): Number of evictable chunks.
// h(nextGC): Heap size at which the next GC will kick in (ms.NextGC).
// h(current): Current heap size (ms.HeapAlloc).
// h(target): Configured target heap size.
//
// Note that the actual value stored in s.persistUrgency is 1000 times the value
// calculated as above to allow using an int32, which supports atomic
// operations.
//
// If no GC has run after the last call of this method, it will always return 0
// (no reason to try to evict any more chunks before we have seen the effect of
// the previous eviction). It will also not decrease the persist urgency in this
// case (but it will increase the persist urgency if a higher value was calculated).
//
// If a GC has run after the last call of this method, the following cases apply:
//
// - If MAX( h(nextGC), h(current) ) < h(target), simply return 0. Nothing to
// evict if the heap is still small enough.
//
// - Otherwise, if n(evictable) is 0, also return 0, but set the urgency score
// to 1 to signal that we want to evict chunk but have no evictable chunks
// available.
//
// - Otherwise, calulate the number of chunks to evict and return it:
//
// MAX( h(nextGC), h(current) ) - h(target)
// n(toEvict) = MIN( n(evictable), ---------------------------------------- )
// c
//
// where c is the size of a chunk.
//
// - In the latter case, the persist urgency might be increased. The final value
// is the following:
//
// n(toEvict)
// MAX( p, ------------ )
// n(evictable)
//
// Broadly speaking, the persist urgency is based on the ratio of the number of
// chunks we want to evict and the number of chunks that are actually
// evictable. However, in particular for the case where we don't need to evict
// chunks yet, it also takes into account how close the heap has already grown
// to the configured target size, and how big the pool of chunks to persist is
// compared to the number of chunks already evictable.
//
// This is a helper method only to be called by MemorySeriesStorage.maybeEvict.
func (s *MemorySeriesStorage) calculatePersistUrgency(ms *runtime.MemStats) int {
var (
oldUrgency = atomic.LoadInt32(&s.persistUrgency)
newUrgency int32
numChunksToPersist = s.getNumChunksToPersist()
)
defer func() {
if newUrgency > 1000 {
newUrgency = 1000
}
atomic.StoreInt32(&s.persistUrgency, newUrgency)
}()
// Take the NextGC as the relevant heap size because the heap will grow
// to that size before GC kicks in. However, at times the current heap
// is already larger than NextGC, in which case we take that worse case.
heapSize := ms.NextGC
if ms.HeapAlloc > ms.NextGC {
heapSize = ms.HeapAlloc
}
if numChunksToPersist > 0 {
newUrgency = int32(1000 * uint64(numChunksToPersist) / uint64(numChunksToPersist+s.evictList.Len()) * heapSize / s.targetHeapSize)
}
// Only continue if a GC has happened since we were here last time.
if ms.NumGC == s.lastNumGC {
if oldUrgency > newUrgency {
// Never reduce urgency without a GC run.
newUrgency = oldUrgency
}
return 0
}
s.lastNumGC = ms.NumGC
if heapSize <= s.targetHeapSize {
return 0 // Heap still small enough, don't evict.
}
if s.evictList.Len() == 0 {
// We want to reduce heap size but there is nothing to evict.
newUrgency = 1000
return 0
}
numChunksToEvict := int((heapSize - s.targetHeapSize) / chunk.ChunkLen)
if numChunksToEvict > s.evictList.Len() {
numChunksToEvict = s.evictList.Len()
}
if u := int32(numChunksToEvict * 1000 / s.evictList.Len()); u > newUrgency {
newUrgency = u
}
return numChunksToEvict
}
// waitForNextFP waits an estimated duration, after which we want to process
// another fingerprint so that we will process all fingerprints in a tenth of
// s.dropAfter assuming that the system is doing nothing else, e.g. if we want
// to drop chunks after 40h, we want to cycle through all fingerprints within
// 4h. The estimation is based on the total number of fingerprints as passed
// in. However, the maximum sweep time is capped at fpMaxSweepTime. Also, the
// method will never wait for longer than fpMaxWaitDuration.
//
// The maxWaitDurationFactor can be used to reduce the waiting time if a faster
// processing is required (for example because unpersisted chunks pile up too
// much).
//
// Normally, the method returns true once the wait duration has passed. However,
// if s.loopStopped is closed, it will return false immediately.
func (s *MemorySeriesStorage) waitForNextFP(numberOfFPs int, maxWaitDurationFactor float64) bool {
d := fpMaxWaitDuration
if numberOfFPs != 0 {
sweepTime := s.dropAfter / 10
if sweepTime > fpMaxSweepTime {
sweepTime = fpMaxSweepTime
}
calculatedWait := time.Duration(float64(sweepTime) / float64(numberOfFPs) * maxWaitDurationFactor)
if calculatedWait < d {
d = calculatedWait
}
}
if d == 0 {
return true
}
t := time.NewTimer(d)
select {
case <-t.C:
return true
case <-s.loopStopping:
return false
}
}
// cycleThroughMemoryFingerprints returns a channel that emits fingerprints for
// series in memory in a throttled fashion. It continues to cycle through all
// fingerprints in memory until s.loopStopping is closed.
func (s *MemorySeriesStorage) cycleThroughMemoryFingerprints() chan model.Fingerprint {
memoryFingerprints := make(chan model.Fingerprint)
go func() {
var fpIter <-chan model.Fingerprint
defer func() {
if fpIter != nil {
for range fpIter {
// Consume the iterator.
}
}
close(memoryFingerprints)
}()
for {
// Initial wait, also important if there are no FPs yet.
if !s.waitForNextFP(s.fpToSeries.length(), 1) {
return
}
begin := time.Now()
fpIter = s.fpToSeries.fpIter()
count := 0
for fp := range fpIter {
select {
case memoryFingerprints <- fp:
case <-s.loopStopping:
return
}
// Reduce the wait time according to the urgency score.
score, rushed := s.getPersistenceUrgencyScore()
if rushed {
score = 1
}
s.waitForNextFP(s.fpToSeries.length(), 1-score)
count++
}
if count > 0 {
log.Infof(
"Completed maintenance sweep through %d in-memory fingerprints in %v.",
count, time.Since(begin),
)
}
}
}()
return memoryFingerprints
}
// cycleThroughArchivedFingerprints returns a channel that emits fingerprints
// for archived series in a throttled fashion. It continues to cycle through all
// archived fingerprints until s.loopStopping is closed.
func (s *MemorySeriesStorage) cycleThroughArchivedFingerprints() chan model.Fingerprint {
archivedFingerprints := make(chan model.Fingerprint)
go func() {
defer close(archivedFingerprints)
for {
archivedFPs, err := s.persistence.fingerprintsModifiedBefore(
model.Now().Add(-s.dropAfter),
)
if err != nil {
log.Error("Failed to lookup archived fingerprint ranges: ", err)
s.waitForNextFP(0, 1)
continue
}
// Initial wait, also important if there are no FPs yet.
if !s.waitForNextFP(len(archivedFPs), 1) {
return
}
begin := time.Now()
for _, fp := range archivedFPs {
select {
case archivedFingerprints <- fp:
case <-s.loopStopping:
return
}
// Never speed up maintenance of archived FPs.
s.waitForNextFP(len(archivedFPs), 1)
}
if len(archivedFPs) > 0 {
log.Infof(
"Completed maintenance sweep through %d archived fingerprints in %v.",
len(archivedFPs), time.Since(begin),
)
}
}
}()
return archivedFingerprints
}
func (s *MemorySeriesStorage) loop() {
checkpointTimer := time.NewTimer(s.checkpointInterval)
var dirtySeriesCount int64
defer func() {
checkpointTimer.Stop()
log.Info("Maintenance loop stopped.")
close(s.loopStopped)
}()
memoryFingerprints := s.cycleThroughMemoryFingerprints()
archivedFingerprints := s.cycleThroughArchivedFingerprints()
// Checkpoints can happen concurrently with maintenance so even with heavy
// checkpointing there will still be sufficient progress on maintenance.
checkpointLoopStopped := make(chan struct{})
go func() {
for {
select {
case <-s.loopStopping:
checkpointLoopStopped <- struct{}{}
return
case <-checkpointTimer.C:
// We clear this before the checkpoint so that dirtySeriesCount
// is an upper bound.
atomic.StoreInt64(&dirtySeriesCount, 0)
s.dirtySeries.Set(0)
err := s.persistence.checkpointSeriesMapAndHeads(s.fpToSeries, s.fpLocker)
if err != nil {
log.Errorln("Error while checkpointing:", err)
}
// If a checkpoint takes longer than checkpointInterval, unluckily timed
// combination with the Reset(0) call below can lead to a case where a
// time is lurking in C leading to repeated checkpointing without break.
select {
case <-checkpointTimer.C: // Get rid of the lurking time.
default:
}
checkpointTimer.Reset(s.checkpointInterval)
}
}
}()
loop:
for {
select {
case <-s.loopStopping:
break loop
case fp := <-memoryFingerprints:
if s.maintainMemorySeries(fp, model.Now().Add(-s.dropAfter)) {
dirty := atomic.AddInt64(&dirtySeriesCount, 1)
s.dirtySeries.Set(float64(dirty))
// Check if we have enough "dirty" series so that we need an early checkpoint.
// However, if we are already behind persisting chunks, creating a checkpoint
// would be counterproductive, as it would slow down chunk persisting even more,
// while in a situation like that, where we are clearly lacking speed of disk
// maintenance, the best we can do for crash recovery is to persist chunks as
// quickly as possible. So only checkpoint if the urgency score is < 1.
if _, rushed := s.getPersistenceUrgencyScore(); !rushed &&
dirty >= int64(s.checkpointDirtySeriesLimit) {
checkpointTimer.Reset(0)
}
}
case fp := <-archivedFingerprints:
s.maintainArchivedSeries(fp, model.Now().Add(-s.dropAfter))
}
}
// Wait until both channels are closed.
for range memoryFingerprints {
}
for range archivedFingerprints {
}
<-checkpointLoopStopped
}
// maintainMemorySeries maintains a series that is in memory (i.e. not
// archived). It returns true if the method has changed from clean to dirty
// (i.e. it is inconsistent with the latest checkpoint now so that in case of a
// crash a recovery operation that requires a disk seek needed to be applied).
//
// The method first closes the head chunk if it was not touched for the duration
// of headChunkTimeout.
//
// Then it determines the chunks that need to be purged and the chunks that need
// to be persisted. Depending on the result, it does the following:
//
// - If all chunks of a series need to be purged, the whole series is deleted
// for good and the method returns false. (Detecting non-existence of a series
// file does not require a disk seek.)
//
// - If any chunks need to be purged (but not all of them), it purges those
// chunks from memory and rewrites the series file on disk, leaving out the
// purged chunks and appending all chunks not yet persisted (with the exception
// of a still open head chunk).
//
// - If no chunks on disk need to be purged, but chunks need to be persisted,
// those chunks are simply appended to the existing series file (or the file is
// created if it does not exist yet).
//
// - If no chunks need to be purged and no chunks need to be persisted, nothing
// happens in this step.
//
// Next, the method checks if all chunks in the series are evicted. In that
// case, it archives the series and returns true.
//
// Finally, it evicts chunk.Descs if there are too many.
func (s *MemorySeriesStorage) maintainMemorySeries(
fp model.Fingerprint, beforeTime model.Time,
) (becameDirty bool) {
defer func(begin time.Time) {
s.maintainSeriesDuration.WithLabelValues(maintainInMemory).Observe(
time.Since(begin).Seconds(),
)
}(time.Now())
s.fpLocker.Lock(fp)
defer s.fpLocker.Unlock(fp)
series, ok := s.fpToSeries.get(fp)
if !ok {
// Series is actually not in memory, perhaps archived or dropped in the meantime.
return false
}
defer s.seriesOps.WithLabelValues(memoryMaintenance).Inc()
closed, err := series.maybeCloseHeadChunk(s.headChunkTimeout)
if err != nil {
s.quarantineSeries(fp, series.metric, err)
s.persistErrors.Inc()
}
if closed {
s.incNumChunksToPersist(1)
s.headChunks.Dec()
}
seriesWasDirty := series.dirty
if s.writeMemorySeries(fp, series, beforeTime) {
// Series is gone now, we are done.
return false
}
iOldestNotEvicted := -1
for i, cd := range series.chunkDescs {
if !cd.IsEvicted() {
iOldestNotEvicted = i
break
}
}
// Archive if all chunks are evicted. Also make sure the last sample has
// an age of at least headChunkTimeout (which is very likely anyway).
if iOldestNotEvicted == -1 && model.Now().Sub(series.lastTime) > s.headChunkTimeout {
s.fpToSeries.del(fp)
s.memorySeries.Dec()
s.persistence.archiveMetric(fp, series.metric, series.firstTime(), series.lastTime)
s.seriesOps.WithLabelValues(archive).Inc()
oldWatermark := atomic.LoadInt64((*int64)(&s.archiveHighWatermark))
if oldWatermark < int64(series.lastTime) {
if !atomic.CompareAndSwapInt64(
(*int64)(&s.archiveHighWatermark),
oldWatermark, int64(series.lastTime),
) {
panic("s.archiveHighWatermark modified outside of maintainMemorySeries")
}
}
return
}
// If we are here, the series is not archived, so check for Chunk.Desc
// eviction next.
series.evictChunkDescs(iOldestNotEvicted)
return series.dirty && !seriesWasDirty
}
// writeMemorySeries (re-)writes a memory series file. While doing so, it drops
// chunks older than beforeTime from both the series file (if it exists) as well
// as from memory. The provided chunksToPersist are appended to the newly
// written series file. If no chunks need to be purged, but chunksToPersist is
// not empty, those chunks are simply appended to the series file. If the series
// contains no chunks after dropping old chunks, it is purged entirely. In that
// case, the method returns true.
//
// If a persist error is encountered, the series is queued for quarantine. In
// that case, the method returns true, too, because the series should not be
// processed anymore (even if it will only be gone for real once quarantining
// has been completed).
//
// The caller must have locked the fp.
func (s *MemorySeriesStorage) writeMemorySeries(
fp model.Fingerprint, series *memorySeries, beforeTime model.Time,
) bool {
var (
persistErr error
cds = series.chunksToPersist()
)
defer func() {
if persistErr != nil {
s.quarantineSeries(fp, series.metric, persistErr)
s.persistErrors.Inc()
}
// The following is done even in case of an error to ensure
// correct counter bookkeeping and to not pin chunks in memory
// that belong to a series that is scheduled for quarantine
// anyway.
for _, cd := range cds {
cd.Unpin(s.evictRequests)
}
s.incNumChunksToPersist(-len(cds))
chunk.Ops.WithLabelValues(chunk.PersistAndUnpin).Add(float64(len(cds)))
series.modTime = s.persistence.seriesFileModTime(fp)
}()
// Get the actual chunks from underneath the chunk.Descs.
// No lock required as chunks still to persist cannot be evicted.
chunks := make([]chunk.Chunk, len(cds))
for i, cd := range cds {
chunks[i] = cd.C
}
if !series.firstTime().Before(beforeTime) {
// Oldest sample not old enough, just append chunks, if any.
if len(cds) == 0 {
return false
}
var offset int
offset, persistErr = s.persistence.persistChunks(fp, chunks)
if persistErr != nil {
return true
}
if series.chunkDescsOffset == -1 {
// This is the first chunk persisted for a newly created
// series that had prior chunks on disk. Finally, we can
// set the chunkDescsOffset.
series.chunkDescsOffset = offset
}
return false
}
newFirstTime, offset, numDroppedFromPersistence, allDroppedFromPersistence, persistErr :=
s.persistence.dropAndPersistChunks(fp, beforeTime, chunks)
if persistErr != nil {
return true
}
if persistErr = series.dropChunks(beforeTime); persistErr != nil {
return true
}
if len(series.chunkDescs) == 0 && allDroppedFromPersistence {
// All chunks dropped from both memory and persistence. Delete the series for good.
s.fpToSeries.del(fp)
s.memorySeries.Dec()
s.seriesOps.WithLabelValues(memoryPurge).Inc()
s.persistence.unindexMetric(fp, series.metric)
return true
}
series.savedFirstTime = newFirstTime
if series.chunkDescsOffset == -1 {
series.chunkDescsOffset = offset
} else {
series.chunkDescsOffset -= numDroppedFromPersistence
if series.chunkDescsOffset < 0 {
persistErr = errors.New("dropped more chunks from persistence than from memory")
series.chunkDescsOffset = 0
return true
}
}
return false
}
// maintainArchivedSeries drops chunks older than beforeTime from an archived
// series. If the series contains no chunks after that, it is purged entirely.
func (s *MemorySeriesStorage) maintainArchivedSeries(fp model.Fingerprint, beforeTime model.Time) {
defer func(begin time.Time) {
s.maintainSeriesDuration.WithLabelValues(maintainArchived).Observe(
time.Since(begin).Seconds(),
)
}(time.Now())
s.fpLocker.Lock(fp)
defer s.fpLocker.Unlock(fp)
has, firstTime, lastTime := s.persistence.hasArchivedMetric(fp)
if !has || !firstTime.Before(beforeTime) {
// Oldest sample not old enough, or metric purged or unarchived in the meantime.
return
}
defer s.seriesOps.WithLabelValues(archiveMaintenance).Inc()
newFirstTime, _, _, allDropped, err := s.persistence.dropAndPersistChunks(fp, beforeTime, nil)
if err != nil {
log.Error("Error dropping persisted chunks: ", err)
}
if allDropped {
s.persistence.purgeArchivedMetric(fp) // Ignoring error. Nothing we can do.
s.seriesOps.WithLabelValues(archivePurge).Inc()
return
}
if err := s.persistence.updateArchivedTimeRange(fp, newFirstTime, lastTime); err != nil {
log.Errorf("Error updating archived time range for fingerprint %v: %s", fp, err)
}
}
// See persistence.loadChunks for detailed explanation.
func (s *MemorySeriesStorage) loadChunks(fp model.Fingerprint, indexes []int, indexOffset int) ([]chunk.Chunk, error) {
return s.persistence.loadChunks(fp, indexes, indexOffset)
}
// See persistence.loadChunkDescs for detailed explanation.
func (s *MemorySeriesStorage) loadChunkDescs(fp model.Fingerprint, offsetFromEnd int) ([]*chunk.Desc, error) {
return s.persistence.loadChunkDescs(fp, offsetFromEnd)
}
// getNumChunksToPersist returns chunksToPersist in a goroutine-safe way.
func (s *MemorySeriesStorage) getNumChunksToPersist() int {
return int(atomic.LoadInt64(&s.numChunksToPersist))
}
// incNumChunksToPersist increments chunksToPersist in a goroutine-safe way. Use a
// negative 'by' to decrement.
func (s *MemorySeriesStorage) incNumChunksToPersist(by int) {
atomic.AddInt64(&s.numChunksToPersist, int64(by))
if by > 0 {
s.queuedChunksToPersist.Add(float64(by))
}
}
// getPersistenceUrgencyScore returns an urgency score for the speed of
// persisting chunks. The score is between 0 and 1, where 0 means no urgency at
// all and 1 means highest urgency. It also returns if the storage is in
// "rushed mode".
//
// The storage enters "rushed mode" if the score exceeds
// persintenceUrgencyScoreForEnteringRushedMode at the time this method is
// called. It will leave "rushed mode" if, at a later time this method is
// called, the score is below persintenceUrgencyScoreForLeavingRushedMode.
// "Rushed mode" plays a role for the adaptive series-sync-strategy. It also
// switches off early checkpointing (due to dirty series), and it makes series
// maintenance happen as quickly as possible.
//
// A score of 1 will trigger throttling of sample ingestion.
//
// It is safe to call this method concurrently.
func (s *MemorySeriesStorage) getPersistenceUrgencyScore() (float64, bool) {
s.rushedMtx.Lock()
defer s.rushedMtx.Unlock()
score := float64(atomic.LoadInt32(&s.persistUrgency)) / 1000
if score > 1 {
score = 1
}
if s.rushed {
// We are already in rushed mode. If the score is still above
// persintenceUrgencyScoreForLeavingRushedMode, return the score
// and leave things as they are.
if score > persintenceUrgencyScoreForLeavingRushedMode {
return score, true
}
// We are out of rushed mode!
s.rushed = false
log.
With("urgencyScore", score).
With("chunksToPersist", s.getNumChunksToPersist()).
With("memoryChunks", atomic.LoadInt64(&chunk.NumMemChunks)).
Info("Storage has left rushed mode.")
return score, false
}
if score > persintenceUrgencyScoreForEnteringRushedMode {
// Enter rushed mode.
s.rushed = true
log.
With("urgencyScore", score).
With("chunksToPersist", s.getNumChunksToPersist()).
With("memoryChunks", atomic.LoadInt64(&chunk.NumMemChunks)).
Warn("Storage has entered rushed mode.")
}
return score, s.rushed
}
// quarantineSeries registers the provided fingerprint for quarantining. It
// always returns immediately. Quarantine requests are processed
// asynchronously. If there are too many requests queued, they are simply
// dropped.
//
// Quarantining means that the series file is moved to the orphaned directory,
// and all its traces are removed from indices. Call this method if an
// unrecoverable error is detected while dealing with a series, and pass in the
// encountered error. It will be saved as a hint in the orphaned directory.
func (s *MemorySeriesStorage) quarantineSeries(fp model.Fingerprint, metric model.Metric, err error) {
req := quarantineRequest{fp: fp, metric: metric, reason: err}
select {
case s.quarantineRequests <- req:
// Request submitted.
default:
log.
With("fingerprint", fp).
With("metric", metric).
With("reason", err).
Warn("Quarantine queue full. Dropped quarantine request.")
s.seriesOps.WithLabelValues(droppedQuarantine).Inc()
}
}
func (s *MemorySeriesStorage) handleQuarantine() {
for {
select {
case req := <-s.quarantineRequests:
s.purgeSeries(req.fp, req.metric, req.reason)
log.
With("fingerprint", req.fp).
With("metric", req.metric).
With("reason", req.reason).
Warn("Series quarantined.")
case <-s.quarantineStopping:
log.Info("Series quarantining stopped.")
close(s.quarantineStopped)
return
}
}
}
// purgeSeries removes all traces of a series. If a non-nil quarantine reason is
// provided, the series file will not be deleted completely, but moved to the
// orphaned directory with the reason and the metric in a hint file. The
// provided metric might be nil if unknown.
func (s *MemorySeriesStorage) purgeSeries(fp model.Fingerprint, m model.Metric, quarantineReason error) {
s.fpLocker.Lock(fp)
var (
series *memorySeries
ok bool
)
if series, ok = s.fpToSeries.get(fp); ok {
s.fpToSeries.del(fp)
s.memorySeries.Dec()
m = series.metric
// Adjust s.chunksToPersist and chunk.NumMemChunks down by
// the number of chunks in this series that are not
// persisted yet. Persisted chunks will be deducted from
// chunk.NumMemChunks upon eviction.
numChunksNotYetPersisted := len(series.chunkDescs) - series.persistWatermark
atomic.AddInt64(&chunk.NumMemChunks, int64(-numChunksNotYetPersisted))
if !series.headChunkClosed {
// Head chunk wasn't counted as waiting for persistence yet.
// (But it was counted as a chunk in memory.)
numChunksNotYetPersisted--
}
s.incNumChunksToPersist(-numChunksNotYetPersisted)
} else {
s.persistence.purgeArchivedMetric(fp) // Ignoring error. There is nothing we can do.
}
if m != nil {
// If we know a metric now, unindex it in any case.
// purgeArchivedMetric might have done so already, but we cannot
// be sure. Unindexing in idempotent, though.
s.persistence.unindexMetric(fp, m)
}
// Attempt to delete/quarantine the series file in any case.
if quarantineReason == nil {
// No reason stated, simply delete the file.
if _, err := s.persistence.deleteSeriesFile(fp); err != nil {
log.
With("fingerprint", fp).
With("metric", m).
With("error", err).
Error("Error deleting series file.")
}
s.seriesOps.WithLabelValues(requestedPurge).Inc()
} else {
if err := s.persistence.quarantineSeriesFile(fp, quarantineReason, m); err == nil {
s.seriesOps.WithLabelValues(completedQurantine).Inc()
} else {
s.seriesOps.WithLabelValues(failedQuarantine).Inc()
log.
With("fingerprint", fp).
With("metric", m).
With("reason", quarantineReason).
With("error", err).
Error("Error quarantining series file.")
}
}
s.fpLocker.Unlock(fp)
}
// Describe implements prometheus.Collector.
func (s *MemorySeriesStorage) Describe(ch chan<- *prometheus.Desc) {
s.persistence.Describe(ch)
s.mapper.Describe(ch)
ch <- s.persistErrors.Desc()
ch <- s.queuedChunksToPersist.Desc()
ch <- s.chunksToPersist.Desc()
ch <- s.memorySeries.Desc()
ch <- s.headChunks.Desc()
ch <- s.dirtySeries.Desc()
s.seriesOps.Describe(ch)
ch <- s.ingestedSamples.Desc()
s.discardedSamples.Describe(ch)
ch <- s.nonExistentSeriesMatches.Desc()
ch <- s.memChunks.Desc()
s.maintainSeriesDuration.Describe(ch)
ch <- s.persistenceUrgencyScore.Desc()
ch <- s.rushedMode.Desc()
ch <- s.targetHeapSizeBytes.Desc()
}
// Collect implements prometheus.Collector.
func (s *MemorySeriesStorage) Collect(ch chan<- prometheus.Metric) {
s.persistence.Collect(ch)
s.mapper.Collect(ch)
ch <- s.persistErrors
ch <- s.queuedChunksToPersist
ch <- s.chunksToPersist
ch <- s.memorySeries
ch <- s.headChunks
ch <- s.dirtySeries
s.seriesOps.Collect(ch)
ch <- s.ingestedSamples
s.discardedSamples.Collect(ch)
ch <- s.nonExistentSeriesMatches
ch <- s.memChunks
s.maintainSeriesDuration.Collect(ch)
ch <- s.persistenceUrgencyScore
ch <- s.rushedMode
ch <- s.targetHeapSizeBytes
}