prometheus/promql/testdata/aggregators.test
Dan Cech 9f4cb06a37 use Welford/Knuth method to compute standard deviation and variance (#4533)
* use Welford/Knuth method to compute standard deviation and variance, avoids float precision issues
* use better method for calculating avg and avg_over_time

Signed-off-by: Dan Cech <dcech@grafana.com>
2018-08-26 10:28:47 +01:00

265 lines
10 KiB
Plaintext

load 5m
http_requests{job="api-server", instance="0", group="production"} 0+10x10
http_requests{job="api-server", instance="1", group="production"} 0+20x10
http_requests{job="api-server", instance="0", group="canary"} 0+30x10
http_requests{job="api-server", instance="1", group="canary"} 0+40x10
http_requests{job="app-server", instance="0", group="production"} 0+50x10
http_requests{job="app-server", instance="1", group="production"} 0+60x10
http_requests{job="app-server", instance="0", group="canary"} 0+70x10
http_requests{job="app-server", instance="1", group="canary"} 0+80x10
load 5m
foo{job="api-server", instance="0", region="europe"} 0+90x10
foo{job="api-server"} 0+100x10
# Simple sum.
eval instant at 50m SUM BY (group) (http_requests{job="api-server"})
{group="canary"} 700
{group="production"} 300
# Test alternative "by"-clause order.
eval instant at 50m sum by (group) (http_requests{job="api-server"})
{group="canary"} 700
{group="production"} 300
# Simple average.
eval instant at 50m avg by (group) (http_requests{job="api-server"})
{group="canary"} 350
{group="production"} 150
# Simple count.
eval instant at 50m count by (group) (http_requests{job="api-server"})
{group="canary"} 2
{group="production"} 2
# Simple without.
eval instant at 50m sum without (instance) (http_requests{job="api-server"})
{group="canary",job="api-server"} 700
{group="production",job="api-server"} 300
# Empty by.
eval instant at 50m sum by () (http_requests{job="api-server"})
{} 1000
# No by/without.
eval instant at 50m sum(http_requests{job="api-server"})
{} 1000
# Empty without.
eval instant at 50m sum without () (http_requests{job="api-server",group="production"})
{group="production",job="api-server",instance="0"} 100
{group="production",job="api-server",instance="1"} 200
# Without with mismatched and missing labels. Do not do this.
eval instant at 50m sum without (instance) (http_requests{job="api-server"} or foo)
{group="canary",job="api-server"} 700
{group="production",job="api-server"} 300
{region="europe",job="api-server"} 900
{job="api-server"} 1000
# Lower-cased aggregation operators should work too.
eval instant at 50m sum(http_requests) by (job) + min(http_requests) by (job) + max(http_requests) by (job) + avg(http_requests) by (job)
{job="app-server"} 4550
{job="api-server"} 1750
# Test alternative "by"-clause order.
eval instant at 50m sum by (group) (http_requests{job="api-server"})
{group="canary"} 700
{group="production"} 300
# Test both alternative "by"-clause orders in one expression.
# Public health warning: stick to one form within an expression (or even
# in an organization), or risk serious user confusion.
eval instant at 50m sum(sum by (group) (http_requests{job="api-server"})) by (job)
{} 1000
# Standard deviation and variance.
eval instant at 50m stddev(http_requests)
{} 229.12878474779
eval instant at 50m stddev by (instance)(http_requests)
{instance="0"} 223.60679774998
{instance="1"} 223.60679774998
eval instant at 50m stdvar(http_requests)
{} 52500
eval instant at 50m stdvar by (instance)(http_requests)
{instance="0"} 50000
{instance="1"} 50000
# Float precision test for standard deviation and variance
clear
load 5m
http_requests{job="api-server", instance="0", group="production"} 0+1.33x10
http_requests{job="api-server", instance="1", group="production"} 0+1.33x10
http_requests{job="api-server", instance="0", group="canary"} 0+1.33x10
eval instant at 50m stddev(http_requests)
{} 0.0
eval instant at 50m stdvar(http_requests)
{} 0.0
# Regression test for missing separator byte in labelsToGroupingKey.
clear
load 5m
label_grouping_test{a="aa", b="bb"} 0+10x10
label_grouping_test{a="a", b="abb"} 0+20x10
eval instant at 50m sum(label_grouping_test) by (a, b)
{a="a", b="abb"} 200
{a="aa", b="bb"} 100
# Tests for min/max.
clear
load 5m
http_requests{job="api-server", instance="0", group="production"} 1
http_requests{job="api-server", instance="1", group="production"} 2
http_requests{job="api-server", instance="0", group="canary"} NaN
http_requests{job="api-server", instance="1", group="canary"} 3
http_requests{job="api-server", instance="2", group="canary"} 4
eval instant at 0m max(http_requests)
{} 4
eval instant at 0m min(http_requests)
{} 1
eval instant at 0m max by (group) (http_requests)
{group="production"} 2
{group="canary"} 4
eval instant at 0m min by (group) (http_requests)
{group="production"} 1
{group="canary"} 3
clear
# Tests for topk/bottomk.
load 5m
http_requests{job="api-server", instance="0", group="production"} 0+10x10
http_requests{job="api-server", instance="1", group="production"} 0+20x10
http_requests{job="api-server", instance="2", group="production"} NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
http_requests{job="api-server", instance="0", group="canary"} 0+30x10
http_requests{job="api-server", instance="1", group="canary"} 0+40x10
http_requests{job="app-server", instance="0", group="production"} 0+50x10
http_requests{job="app-server", instance="1", group="production"} 0+60x10
http_requests{job="app-server", instance="0", group="canary"} 0+70x10
http_requests{job="app-server", instance="1", group="canary"} 0+80x10
eval_ordered instant at 50m topk(3, http_requests)
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="production", instance="1", job="app-server"} 600
eval_ordered instant at 50m topk(5, http_requests{group="canary",job="app-server"})
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="canary", instance="0", job="app-server"} 700
eval_ordered instant at 50m bottomk(3, http_requests)
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="canary", instance="0", job="api-server"} 300
eval_ordered instant at 50m bottomk(5, http_requests{group="canary",job="app-server"})
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="canary", instance="1", job="app-server"} 800
eval instant at 50m topk by (group) (1, http_requests)
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="canary", instance="1", job="app-server"} 800
eval instant at 50m bottomk by (group) (2, http_requests)
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="1", job="api-server"} 200
eval_ordered instant at 50m bottomk by (group) (2, http_requests{group="production"})
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="1", job="api-server"} 200
# Test NaN is sorted away from the top/bottom.
eval_ordered instant at 50m topk(3, http_requests{job="api-server",group="production"})
http_requests{job="api-server", instance="1", group="production"} 200
http_requests{job="api-server", instance="0", group="production"} 100
http_requests{job="api-server", instance="2", group="production"} NaN
eval_ordered instant at 50m bottomk(3, http_requests{job="api-server",group="production"})
http_requests{job="api-server", instance="0", group="production"} 100
http_requests{job="api-server", instance="1", group="production"} 200
http_requests{job="api-server", instance="2", group="production"} NaN
# Test topk and bottomk allocate min(k, input_vector) for results vector
eval_ordered instant at 50m bottomk(9999999999, http_requests{job="app-server",group="canary"})
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="canary", instance="1", job="app-server"} 800
eval_ordered instant at 50m topk(9999999999, http_requests{job="api-server",group="production"})
http_requests{job="api-server", instance="1", group="production"} 200
http_requests{job="api-server", instance="0", group="production"} 100
http_requests{job="api-server", instance="2", group="production"} NaN
clear
# Tests for count_values.
load 5m
version{job="api-server", instance="0", group="production"} 6
version{job="api-server", instance="1", group="production"} 6
version{job="api-server", instance="2", group="production"} 6
version{job="api-server", instance="0", group="canary"} 8
version{job="api-server", instance="1", group="canary"} 8
version{job="app-server", instance="0", group="production"} 6
version{job="app-server", instance="1", group="production"} 6
version{job="app-server", instance="0", group="canary"} 7
version{job="app-server", instance="1", group="canary"} 7
eval instant at 5m count_values("version", version)
{version="6"} 5
{version="7"} 2
{version="8"} 2
eval instant at 5m count_values without (instance)("version", version)
{job="api-server", group="production", version="6"} 3
{job="api-server", group="canary", version="8"} 2
{job="app-server", group="production", version="6"} 2
{job="app-server", group="canary", version="7"} 2
# Overwrite label with output. Don't do this.
eval instant at 5m count_values without (instance)("job", version)
{job="6", group="production"} 5
{job="8", group="canary"} 2
{job="7", group="canary"} 2
# Overwrite label with output. Don't do this.
eval instant at 5m count_values by (job, group)("job", version)
{job="6", group="production"} 5
{job="8", group="canary"} 2
{job="7", group="canary"} 2
# Tests for quantile.
clear
load 10s
data{test="two samples",point="a"} 0
data{test="two samples",point="b"} 1
data{test="three samples",point="a"} 0
data{test="three samples",point="b"} 1
data{test="three samples",point="c"} 2
data{test="uneven samples",point="a"} 0
data{test="uneven samples",point="b"} 1
data{test="uneven samples",point="c"} 4
eval instant at 1m quantile without(point)(0.8, data)
{test="two samples"} 0.8
{test="three samples"} 1.6
{test="uneven samples"} 2.8