prometheus/tsdb/chunks/queue_test.go
Peter Štibraný ffc60d8397
Reduce chunk write queue memory usage 2 (#10874)
* Job queue

This PR reimplements chan chunkWriteJob with custom buffered queue that should use less memory, because it doesn't preallocate entire buffer for maximum queue size at once. Instead it allocates individual "segments" with smaller size.

As elements are added to the queue, they fill individual segments. When elements are removed from the queue (and segments), empty segments can be thrown away. This doesn't change memory usage of the queue when it's full, but should decrease its memory footprint when it's empty (queue will keep max 1 segment in such case).

Signed-off-by: Peter Štibraný <pstibrany@gmail.com>

* Modify test to work with low resolution timer.

Signed-off-by: Peter Štibraný <pstibrany@gmail.com>

* Improve comments.

Signed-off-by: Peter Štibraný <pstibrany@gmail.com>
2022-06-29 17:51:27 +05:30

324 lines
7.5 KiB
Go

// Copyright 2022 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package chunks
import (
"math/rand"
"sync"
"testing"
"time"
"github.com/stretchr/testify/require"
"go.uber.org/atomic"
)
func (q *writeJobQueue) assertInvariants(t *testing.T) {
q.mtx.Lock()
defer q.mtx.Unlock()
totalSize := 0
for s := q.first; s != nil; s = s.nextSegment {
require.True(t, s.segment != nil)
// Next read index is lower or equal than next write index (we cannot past written jobs)
require.True(t, s.nextRead <= s.nextWrite)
// Number of unread elements in this segment.
totalSize += s.nextWrite - s.nextRead
// First segment can be partially read, other segments were not read yet.
if s == q.first {
require.True(t, s.nextRead >= 0)
} else {
require.True(t, s.nextRead == 0)
}
// If first shard is empty (everything was read from it already), it must have extra capacity for
// additional elements, otherwise it would have been removed.
if s == q.first && s.nextRead == s.nextWrite {
require.True(t, s.nextWrite < len(s.segment))
}
// Segments in the middle are full.
if s != q.first && s != q.last {
require.True(t, s.nextWrite == len(s.segment))
}
// Last segment must have at least one element, or we wouldn't have created it.
require.True(t, s.nextWrite > 0)
}
require.Equal(t, q.size, totalSize)
}
func TestQueuePushPopSingleGoroutine(t *testing.T) {
seed := time.Now().UnixNano()
t.Log("seed:", seed)
r := rand.New(rand.NewSource(seed))
const maxSize = 500
const maxIters = 50
for max := 1; max < maxSize; max++ {
queue := newWriteJobQueue(max, 1+(r.Int()%max))
elements := 0 // total elements in the queue
lastWriteID := 0
lastReadID := 0
for iter := 0; iter < maxIters; iter++ {
if elements < max {
toWrite := r.Int() % (max - elements)
if toWrite == 0 {
toWrite = 1
}
for i := 0; i < toWrite; i++ {
lastWriteID++
require.True(t, queue.push(chunkWriteJob{seriesRef: HeadSeriesRef(lastWriteID)}))
elements++
}
}
if elements > 0 {
toRead := r.Int() % elements
if toRead == 0 {
toRead = 1
}
for i := 0; i < toRead; i++ {
lastReadID++
j, b := queue.pop()
require.True(t, b)
require.Equal(t, HeadSeriesRef(lastReadID), j.seriesRef)
elements--
}
}
require.Equal(t, elements, queue.length())
queue.assertInvariants(t)
}
}
}
func TestQueuePushBlocksOnFullQueue(t *testing.T) {
queue := newWriteJobQueue(5, 5)
pushTime := make(chan time.Time)
go func() {
require.True(t, queue.push(chunkWriteJob{seriesRef: 1}))
require.True(t, queue.push(chunkWriteJob{seriesRef: 2}))
require.True(t, queue.push(chunkWriteJob{seriesRef: 3}))
require.True(t, queue.push(chunkWriteJob{seriesRef: 4}))
require.True(t, queue.push(chunkWriteJob{seriesRef: 5}))
pushTime <- time.Now()
// This will block
require.True(t, queue.push(chunkWriteJob{seriesRef: 6}))
pushTime <- time.Now()
}()
timeBeforePush := <-pushTime
delay := 100 * time.Millisecond
select {
case <-time.After(delay):
// ok
case <-pushTime:
require.Fail(t, "didn't expect another push to proceed")
}
popTime := time.Now()
j, b := queue.pop()
require.True(t, b)
require.Equal(t, HeadSeriesRef(1), j.seriesRef)
timeAfterPush := <-pushTime
require.GreaterOrEqual(t, timeAfterPush.Sub(popTime), time.Duration(0))
require.GreaterOrEqual(t, timeAfterPush.Sub(timeBeforePush), delay)
}
func TestQueuePopBlocksOnEmptyQueue(t *testing.T) {
queue := newWriteJobQueue(5, 5)
popTime := make(chan time.Time)
go func() {
j, b := queue.pop()
require.True(t, b)
require.Equal(t, HeadSeriesRef(1), j.seriesRef)
popTime <- time.Now()
// This will block
j, b = queue.pop()
require.True(t, b)
require.Equal(t, HeadSeriesRef(2), j.seriesRef)
popTime <- time.Now()
}()
queue.push(chunkWriteJob{seriesRef: 1})
timeBeforePop := <-popTime
delay := 100 * time.Millisecond
select {
case <-time.After(delay):
// ok
case <-popTime:
require.Fail(t, "didn't expect another pop to proceed")
}
pushTime := time.Now()
require.True(t, queue.push(chunkWriteJob{seriesRef: 2}))
timeAfterPop := <-popTime
require.GreaterOrEqual(t, timeAfterPop.Sub(pushTime), time.Duration(0))
require.Greater(t, timeAfterPop.Sub(timeBeforePop), delay)
}
func TestQueuePopUnblocksOnClose(t *testing.T) {
queue := newWriteJobQueue(5, 5)
popTime := make(chan time.Time)
go func() {
j, b := queue.pop()
require.True(t, b)
require.Equal(t, HeadSeriesRef(1), j.seriesRef)
popTime <- time.Now()
// This will block until queue is closed.
j, b = queue.pop()
require.False(t, b)
popTime <- time.Now()
}()
queue.push(chunkWriteJob{seriesRef: 1})
timeBeforePop := <-popTime
delay := 100 * time.Millisecond
select {
case <-time.After(delay):
// ok
case <-popTime:
require.Fail(t, "didn't expect another pop to proceed")
}
closeTime := time.Now()
queue.close()
timeAfterPop := <-popTime
require.GreaterOrEqual(t, timeAfterPop.Sub(closeTime), time.Duration(0))
require.GreaterOrEqual(t, timeAfterPop.Sub(timeBeforePop), delay)
}
func TestQueuePopAfterCloseReturnsAllElements(t *testing.T) {
const count = 10
queue := newWriteJobQueue(count, count)
for i := 0; i < count; i++ {
require.True(t, queue.push(chunkWriteJob{seriesRef: HeadSeriesRef(i)}))
}
// close the queue before popping all elements.
queue.close()
// No more pushing allowed after close.
require.False(t, queue.push(chunkWriteJob{seriesRef: HeadSeriesRef(11111)}))
// Verify that we can still read all pushed elements.
for i := 0; i < count; i++ {
j, b := queue.pop()
require.True(t, b)
require.Equal(t, HeadSeriesRef(i), j.seriesRef)
}
_, b := queue.pop()
require.False(t, b)
}
func TestQueuePushPopManyGoroutines(t *testing.T) {
const readGoroutines = 5
const writeGoroutines = 10
const writes = 500
queue := newWriteJobQueue(1024, 64)
// Reading goroutine
refsMx := sync.Mutex{}
refs := map[HeadSeriesRef]bool{}
readersWG := sync.WaitGroup{}
for i := 0; i < readGoroutines; i++ {
readersWG.Add(1)
go func() {
defer readersWG.Done()
for j, ok := queue.pop(); ok; j, ok = queue.pop() {
refsMx.Lock()
refs[j.seriesRef] = true
refsMx.Unlock()
}
}()
}
id := atomic.Uint64{}
writersWG := sync.WaitGroup{}
for i := 0; i < writeGoroutines; i++ {
writersWG.Add(1)
go func() {
defer writersWG.Done()
for i := 0; i < writes; i++ {
ref := id.Inc()
require.True(t, queue.push(chunkWriteJob{seriesRef: HeadSeriesRef(ref)}))
}
}()
}
// Wait until all writes are done.
writersWG.Wait()
// Close the queue and wait for reading to be done.
queue.close()
readersWG.Wait()
// Check if we have all expected values
require.Equal(t, writeGoroutines*writes, len(refs))
}
func TestQueueSegmentIsKeptEvenIfEmpty(t *testing.T) {
queue := newWriteJobQueue(1024, 64)
require.True(t, queue.push(chunkWriteJob{seriesRef: 1}))
_, b := queue.pop()
require.True(t, b)
require.NotNil(t, queue.first)
require.Equal(t, 1, queue.first.nextRead)
require.Equal(t, 1, queue.first.nextWrite)
}