prometheus/storage/local/series.go
Bjoern Rabenstein fd6600850a Fix race in chunkDesc.
Change-Id: Id7bae115d75886e10d44184a690a76777b1531fe
2014-11-25 17:08:45 +01:00

614 lines
16 KiB
Go

// Copyright 2014 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package local
import (
"sort"
"sync"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/storage/metric"
)
// fingerprintSeriesPair pairs a fingerprint with a memorySeries pointer.
type fingerprintSeriesPair struct {
fp clientmodel.Fingerprint
series *memorySeries
}
// seriesMap maps fingerprints to memory series. All its methods are
// goroutine-safe. A SeriesMap is effectively is a goroutine-safe version of
// map[clientmodel.Fingerprint]*memorySeries.
type seriesMap struct {
mtx sync.RWMutex
m map[clientmodel.Fingerprint]*memorySeries
}
// newSeriesMap returns a newly allocated empty seriesMap. To create a seriesMap
// based on a prefilled map, use an explicit initializer.
func newSeriesMap() *seriesMap {
return &seriesMap{m: make(map[clientmodel.Fingerprint]*memorySeries)}
}
// length returns the number of mappings in the seriesMap.
func (sm *seriesMap) length() int {
sm.mtx.RLock()
defer sm.mtx.RUnlock()
return len(sm.m)
}
// get returns a memorySeries for a fingerprint. Return values have the same
// semantics as the native Go map.
func (sm *seriesMap) get(fp clientmodel.Fingerprint) (s *memorySeries, ok bool) {
sm.mtx.RLock()
defer sm.mtx.RUnlock()
s, ok = sm.m[fp]
return
}
// put adds a mapping to the seriesMap.
func (sm *seriesMap) put(fp clientmodel.Fingerprint, s *memorySeries) {
sm.mtx.Lock()
defer sm.mtx.Unlock()
sm.m[fp] = s
}
// del removes a mapping from the series Map.
func (sm *seriesMap) del(fp clientmodel.Fingerprint) {
sm.mtx.Lock()
defer sm.mtx.Unlock()
delete(sm.m, fp)
}
// iter returns a channel that produces all mappings in the seriesMap. The
// channel will be closed once all fingerprints have been received. Not
// consuming all fingerprints from the channel will leak a goroutine. The
// semantics of concurrent modification of seriesMap is the similar as the one
// for iterating over a map with a 'range' clause. However, if the next element
// in iteration order is removed after the current element has been received
// from the channel, it will still be produced by the channel.
func (sm *seriesMap) iter() <-chan fingerprintSeriesPair {
ch := make(chan fingerprintSeriesPair)
go func() {
sm.mtx.RLock()
for fp, s := range sm.m {
sm.mtx.RUnlock()
ch <- fingerprintSeriesPair{fp, s}
sm.mtx.RLock()
}
sm.mtx.RUnlock()
close(ch)
}()
return ch
}
// fpIter returns a channel that produces all fingerprints in the seriesMap. The
// channel will be closed once all fingerprints have been received. Not
// consuming all fingerprints from the channel will leak a goroutine. The
// semantics of concurrent modification of seriesMap is the similar as the one
// for iterating over a map with a 'range' clause. However, if the next element
// in iteration order is removed after the current element has been received
// from the channel, it will still be produced by the channel.
func (sm *seriesMap) fpIter() <-chan clientmodel.Fingerprint {
ch := make(chan clientmodel.Fingerprint)
go func() {
sm.mtx.RLock()
for fp := range sm.m {
sm.mtx.RUnlock()
ch <- fp
sm.mtx.RLock()
}
sm.mtx.RUnlock()
close(ch)
}()
return ch
}
type chunkDescs []*chunkDesc
type chunkDesc struct {
sync.Mutex
chunk chunk
refCount int
evict bool
firstTimeField clientmodel.Timestamp // TODO: stupid name, reorganize.
lastTimeField clientmodel.Timestamp
}
func (cd *chunkDesc) add(s *metric.SamplePair) chunks {
cd.Lock()
defer cd.Unlock()
return cd.chunk.add(s)
}
func (cd *chunkDesc) pin() {
cd.Lock()
defer cd.Unlock()
numPinnedChunks.Inc()
cd.refCount++
}
func (cd *chunkDesc) unpin() {
cd.Lock()
defer cd.Unlock()
if cd.refCount == 0 {
panic("cannot unpin already unpinned chunk")
}
numPinnedChunks.Dec()
cd.refCount--
if cd.refCount == 0 && cd.evict {
cd.evictNow()
}
}
func (cd *chunkDesc) firstTime() clientmodel.Timestamp {
cd.Lock()
defer cd.Unlock()
if cd.chunk == nil {
return cd.firstTimeField
}
return cd.chunk.firstTime()
}
func (cd *chunkDesc) lastTime() clientmodel.Timestamp {
cd.Lock()
defer cd.Unlock()
if cd.chunk == nil {
return cd.lastTimeField
}
return cd.chunk.lastTime()
}
func (cd *chunkDesc) contains(t clientmodel.Timestamp) bool {
return !t.Before(cd.firstTime()) && !t.After(cd.lastTime())
}
func (cd *chunkDesc) open(c chunk) {
cd.Lock()
defer cd.Unlock()
if cd.refCount != 0 || cd.chunk != nil {
panic("cannot open already pinned chunk")
}
cd.evict = false
cd.chunk = c
numPinnedChunks.Inc()
cd.refCount++
}
func (cd *chunkDesc) evictOnUnpin() {
cd.Lock()
defer cd.Unlock()
if cd.refCount == 0 {
cd.evictNow()
}
cd.evict = true
}
// evictNow is an internal helper method.
func (cd *chunkDesc) evictNow() {
cd.firstTimeField = cd.chunk.firstTime()
cd.lastTimeField = cd.chunk.lastTime()
cd.chunk = nil
}
type memorySeries struct {
metric clientmodel.Metric
// Sorted by start time, overlapping chunk ranges are forbidden.
chunkDescs chunkDescs
// Whether chunkDescs for chunks on disk are all loaded. If false, some
// (or all) chunkDescs are only on disk. These chunks are all contiguous
// and at the tail end.
chunkDescsLoaded bool
// Whether the current head chunk has already been persisted (or at
// least has been scheduled to be persisted). If true, the current head
// chunk must not be modified anymore.
headChunkPersisted bool
}
// newMemorySeries returns a pointer to a newly allocated memorySeries for the
// given metric. reallyNew defines if the memorySeries is a genuinely new series
// or (if false) a series for a metric being unarchived, i.e. a series that
// existed before but has been evicted from memory.
func newMemorySeries(m clientmodel.Metric, reallyNew bool) *memorySeries {
return &memorySeries{
metric: m,
chunkDescsLoaded: reallyNew,
headChunkPersisted: !reallyNew,
}
}
// add adds a sample pair to the series.
// The caller must have locked the fingerprint of the series.
func (s *memorySeries) add(fp clientmodel.Fingerprint, v *metric.SamplePair, persistQueue chan *persistRequest) {
if len(s.chunkDescs) == 0 || s.headChunkPersisted {
newHead := &chunkDesc{
chunk: newDeltaEncodedChunk(d1, d0, true),
refCount: 1,
}
s.chunkDescs = append(s.chunkDescs, newHead)
s.headChunkPersisted = false
}
chunks := s.head().add(v)
s.head().chunk = chunks[0]
if len(chunks) > 1 {
queuePersist := func(cd *chunkDesc) {
persistQueue <- &persistRequest{
fingerprint: fp,
chunkDesc: cd,
}
}
queuePersist(s.head())
for i, c := range chunks[1:] {
cd := &chunkDesc{
chunk: c,
refCount: 1,
}
s.chunkDescs = append(s.chunkDescs, cd)
// The last chunk is still growing.
if i < len(chunks[1:])-1 {
queuePersist(cd)
}
}
}
}
// persistHeadChunk queues the head chunk for persisting if not already done.
// The caller must have locked the fingerprint of the series.
func (s *memorySeries) persistHeadChunk(fp clientmodel.Fingerprint, persistQueue chan *persistRequest) {
if s.headChunkPersisted {
return
}
s.headChunkPersisted = true
persistQueue <- &persistRequest{
fingerprint: fp,
chunkDesc: s.head(),
}
}
// evictOlderThan evicts chunks whose latest sample is older than the given timestamp.
// The caller must have locked the fingerprint of the series.
func (s *memorySeries) evictOlderThan(t clientmodel.Timestamp) (allEvicted bool) {
// For now, always drop the entire range from oldest to t.
for _, cd := range s.chunkDescs {
if !cd.lastTime().Before(t) {
return false
}
if cd.chunk == nil {
continue
}
cd.evictOnUnpin()
}
return true
}
// purgeOlderThan returns true if all chunks have been purged.
// The caller must have locked the fingerprint of the series.
func (s *memorySeries) purgeOlderThan(t clientmodel.Timestamp) bool {
keepIdx := len(s.chunkDescs)
for i, cd := range s.chunkDescs {
if !cd.lastTime().Before(t) {
keepIdx = i
break
}
}
for i := 0; i < keepIdx; i++ {
if s.chunkDescs[i].chunk != nil {
s.chunkDescs[i].evictOnUnpin()
}
}
s.chunkDescs = s.chunkDescs[keepIdx:]
return len(s.chunkDescs) == 0
}
// preloadChunks is an internal helper method.
// TODO: in this method (and other places), we just fudge around with chunkDesc
// internals without grabbing the chunkDesc lock. Study how this needs to be
// protected against other accesses that don't hold the fp lock.
func (s *memorySeries) preloadChunks(indexes []int, p *persistence) (chunkDescs, error) {
loadIndexes := []int{}
pinnedChunkDescs := make(chunkDescs, 0, len(indexes))
for _, idx := range indexes {
pinnedChunkDescs = append(pinnedChunkDescs, s.chunkDescs[idx])
if s.chunkDescs[idx].chunk == nil {
loadIndexes = append(loadIndexes, idx)
} else {
s.chunkDescs[idx].pin()
}
}
if len(loadIndexes) > 0 {
fp := s.metric.Fingerprint()
chunks, err := p.loadChunks(fp, loadIndexes)
if err != nil {
// Unpin any pinned chunks that were already loaded.
for _, cd := range pinnedChunkDescs {
if cd.chunk != nil {
cd.unpin()
}
}
return nil, err
}
for i, c := range chunks {
cd := s.chunkDescs[loadIndexes[i]]
cd.open(c)
}
}
return pinnedChunkDescs, nil
}
/*
func (s *memorySeries) preloadChunksAtTime(t clientmodel.Timestamp, p *persistence) (chunkDescs, error) {
s.mtx.Lock()
defer s.mtx.Unlock()
if len(s.chunkDescs) == 0 {
return nil, nil
}
var pinIndexes []int
// Find first chunk where lastTime() is after or equal to t.
i := sort.Search(len(s.chunkDescs), func(i int) bool {
return !s.chunkDescs[i].lastTime().Before(t)
})
switch i {
case 0:
pinIndexes = []int{0}
case len(s.chunkDescs):
pinIndexes = []int{i - 1}
default:
if s.chunkDescs[i].contains(t) {
pinIndexes = []int{i}
} else {
pinIndexes = []int{i - 1, i}
}
}
return s.preloadChunks(pinIndexes, p)
}
*/
// loadChunkDescs is an internal helper method.
func (s *memorySeries) loadChunkDescs(p *persistence) error {
cds, err := p.loadChunkDescs(s.metric.Fingerprint(), s.chunkDescs[0].firstTime())
if err != nil {
return err
}
s.chunkDescs = append(cds, s.chunkDescs...)
s.chunkDescsLoaded = true
return nil
}
// preloadChunksForRange loads chunks for the given range from the persistence.
// The caller must have locked the fingerprint of the series.
func (s *memorySeries) preloadChunksForRange(from clientmodel.Timestamp, through clientmodel.Timestamp, p *persistence) (chunkDescs, error) {
if !s.chunkDescsLoaded && (len(s.chunkDescs) == 0 || from.Before(s.chunkDescs[0].firstTime())) {
if err := s.loadChunkDescs(p); err != nil {
return nil, err
}
}
if len(s.chunkDescs) == 0 {
return nil, nil
}
// Find first chunk with start time after "from".
fromIdx := sort.Search(len(s.chunkDescs), func(i int) bool {
return s.chunkDescs[i].firstTime().After(from)
})
// Find first chunk with start time after "through".
throughIdx := sort.Search(len(s.chunkDescs), func(i int) bool {
return s.chunkDescs[i].firstTime().After(through)
})
if fromIdx > 0 {
fromIdx--
}
if throughIdx == len(s.chunkDescs) {
throughIdx--
}
pinIndexes := make([]int, 0, throughIdx-fromIdx+1)
for i := fromIdx; i <= throughIdx; i++ {
pinIndexes = append(pinIndexes, i)
}
return s.preloadChunks(pinIndexes, p)
}
// memorySeriesIterator implements SeriesIterator.
type memorySeriesIterator struct {
lock, unlock func()
chunkIt chunkIterator
chunks chunks
}
func (s *memorySeries) newIterator(lockFunc, unlockFunc func()) SeriesIterator {
chunks := make(chunks, 0, len(s.chunkDescs))
for i, cd := range s.chunkDescs {
if cd.chunk != nil {
if i == len(s.chunkDescs)-1 {
chunks = append(chunks, cd.chunk.clone())
} else {
chunks = append(chunks, cd.chunk)
}
}
}
return &memorySeriesIterator{
lock: lockFunc,
unlock: unlockFunc,
chunks: chunks,
}
}
func (s *memorySeries) head() *chunkDesc {
return s.chunkDescs[len(s.chunkDescs)-1]
}
func (s *memorySeries) values() metric.Values {
var values metric.Values
for _, cd := range s.chunkDescs {
for sample := range cd.chunk.values() {
values = append(values, *sample)
}
}
return values
}
func (s *memorySeries) firstTime() clientmodel.Timestamp {
return s.chunkDescs[0].firstTime()
}
func (s *memorySeries) lastTime() clientmodel.Timestamp {
return s.head().lastTime()
}
// GetValueAtTime implements SeriesIterator.
func (it *memorySeriesIterator) GetValueAtTime(t clientmodel.Timestamp) metric.Values {
it.lock()
defer it.unlock()
// The most common case. We are iterating through a chunk.
if it.chunkIt != nil && it.chunkIt.contains(t) {
return it.chunkIt.getValueAtTime(t)
}
it.chunkIt = nil
if len(it.chunks) == 0 {
return nil
}
// Before or exactly on the first sample of the series.
if !t.After(it.chunks[0].firstTime()) {
// return first value of first chunk
return it.chunks[0].newIterator().getValueAtTime(t)
}
// After or exactly on the last sample of the series.
if !t.Before(it.chunks[len(it.chunks)-1].lastTime()) {
// return last value of last chunk
return it.chunks[len(it.chunks)-1].newIterator().getValueAtTime(t)
}
// Find first chunk where lastTime() is after or equal to t.
i := sort.Search(len(it.chunks), func(i int) bool {
return !it.chunks[i].lastTime().Before(t)
})
if i == len(it.chunks) {
panic("out of bounds")
}
if t.Before(it.chunks[i].firstTime()) {
// We ended up between two chunks.
return metric.Values{
it.chunks[i-1].newIterator().getValueAtTime(t)[0],
it.chunks[i].newIterator().getValueAtTime(t)[0],
}
}
// We ended up in the middle of a chunk. We might stay there for a while,
// so save it as the current chunk iterator.
it.chunkIt = it.chunks[i].newIterator()
return it.chunkIt.getValueAtTime(t)
}
// GetBoundaryValues implements SeriesIterator.
func (it *memorySeriesIterator) GetBoundaryValues(in metric.Interval) metric.Values {
return it.GetRangeValues(in)
// TODO: The following doesn't work as expected. Fix it.
it.lock()
defer it.unlock()
// Find the first relevant chunk.
i := sort.Search(len(it.chunks), func(i int) bool {
return !it.chunks[i].lastTime().Before(in.OldestInclusive)
})
values := metric.Values{}
for ; i < len(it.chunks); i++ {
c := it.chunks[i]
var chunkIt chunkIterator
if c.firstTime().After(in.NewestInclusive) {
if len(values) == 1 {
// We found the first value already, but are now
// already past the last value. The value we
// want must be the last value of the previous
// chunk. So backtrack...
chunkIt = it.chunks[i-1].newIterator()
values = append(values, chunkIt.getValueAtTime(in.NewestInclusive)[0])
}
break
}
if len(values) == 0 {
chunkIt = c.newIterator()
firstValues := chunkIt.getValueAtTime(in.OldestInclusive)
switch len(firstValues) {
case 2:
values = append(values, firstValues[1])
case 1:
values = firstValues
default:
panic("unexpected return from getValueAtTime")
}
}
if c.lastTime().After(in.NewestInclusive) {
if chunkIt == nil {
chunkIt = c.newIterator()
}
values = append(values, chunkIt.getValueAtTime(in.NewestInclusive)[0])
break
}
}
if len(values) == 2 && values[0].Equal(&values[1]) {
return values[:1]
}
return values
}
// GetRangeValues implements SeriesIterator.
func (it *memorySeriesIterator) GetRangeValues(in metric.Interval) metric.Values {
it.lock()
defer it.unlock()
// Find the first relevant chunk.
i := sort.Search(len(it.chunks), func(i int) bool {
return !it.chunks[i].lastTime().Before(in.OldestInclusive)
})
values := metric.Values{}
for _, c := range it.chunks[i:] {
if c.firstTime().After(in.NewestInclusive) {
break
}
// TODO: actually reuse an iterator between calls if we get multiple ranges
// from the same chunk.
values = append(values, c.newIterator().getRangeValues(in)...)
}
return values
}