zxing/csharp/qrcode/detector/AlignmentPatternFinder.cs

310 lines
10 KiB
C#
Raw Normal View History

using System;
using System.Collections.Generic;
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
namespace com.google.zxing.qrcode.detector
{
using NotFoundException = com.google.zxing.NotFoundException;
using ResultPointCallback = com.google.zxing.ResultPointCallback;
using BitMatrix = com.google.zxing.common.BitMatrix;
/// <summary>
/// <p>This class attempts to find alignment patterns in a QR Code. Alignment patterns look like finder
/// patterns but are smaller and appear at regular intervals throughout the image.</p>
///
/// <p>At the moment this only looks for the bottom-right alignment pattern.</p>
///
/// <p>This is mostly a simplified copy of <seealso cref="FinderPatternFinder"/>. It is copied,
/// pasted and stripped down here for maximum performance but does unfortunately duplicate
/// some code.</p>
///
/// <p>This class is thread-safe but not reentrant. Each thread must allocate its own object.</p>
///
/// @author Sean Owen
/// </summary>
internal sealed class AlignmentPatternFinder
{
private readonly BitMatrix image;
private readonly IList<AlignmentPattern> possibleCenters;
private readonly int startX;
private readonly int startY;
private readonly int width;
private readonly int height;
private readonly float moduleSize;
private readonly int[] crossCheckStateCount;
private readonly ResultPointCallback resultPointCallback;
/// <summary>
/// <p>Creates a finder that will look in a portion of the whole image.</p>
/// </summary>
/// <param name="image"> image to search </param>
/// <param name="startX"> left column from which to start searching </param>
/// <param name="startY"> top row from which to start searching </param>
/// <param name="width"> width of region to search </param>
/// <param name="height"> height of region to search </param>
/// <param name="moduleSize"> estimated module size so far </param>
internal AlignmentPatternFinder(BitMatrix image, int startX, int startY, int width, int height, float moduleSize, ResultPointCallback resultPointCallback)
{
this.image = image;
this.possibleCenters = new List<AlignmentPattern>(5);
this.startX = startX;
this.startY = startY;
this.width = width;
this.height = height;
this.moduleSize = moduleSize;
this.crossCheckStateCount = new int[3];
this.resultPointCallback = resultPointCallback;
}
/// <summary>
/// <p>This method attempts to find the bottom-right alignment pattern in the image. It is a bit messy since
/// it's pretty performance-critical and so is written to be fast foremost.</p>
/// </summary>
/// <returns> <seealso cref="AlignmentPattern"/> if found </returns>
/// <exception cref="NotFoundException"> if not found </exception>
//JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET:
//ORIGINAL LINE: AlignmentPattern find() throws com.google.zxing.NotFoundException
internal AlignmentPattern find()
{
int startX = this.startX;
int height = this.height;
int maxJ = startX + width;
int middleI = startY + (height >> 1);
// We are looking for black/white/black modules in 1:1:1 ratio;
// this tracks the number of black/white/black modules seen so far
int[] stateCount = new int[3];
for (int iGen = 0; iGen < height; iGen++)
{
// Search from middle outwards
int i = middleI + ((iGen & 0x01) == 0 ? (iGen + 1) >> 1 : -((iGen + 1) >> 1));
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
int j = startX;
// Burn off leading white pixels before anything else; if we start in the middle of
// a white run, it doesn't make sense to count its length, since we don't know if the
// white run continued to the left of the start point
while (j < maxJ && !image.get(j, i))
{
j++;
}
int currentState = 0;
while (j < maxJ)
{
if (image.get(j, i))
{
// Black pixel
if (currentState == 1) // Counting black pixels
{
stateCount[currentState]++;
} // Counting white pixels
else
{
if (currentState == 2) // A winner?
{
if (foundPatternCross(stateCount)) // Yes
{
AlignmentPattern confirmed = handlePossibleCenter(stateCount, i, j);
if (confirmed != null)
{
return confirmed;
}
}
stateCount[0] = stateCount[2];
stateCount[1] = 1;
stateCount[2] = 0;
currentState = 1;
}
else
{
stateCount[++currentState]++;
}
}
} // White pixel
else
{
if (currentState == 1) // Counting black pixels
{
currentState++;
}
stateCount[currentState]++;
}
j++;
}
if (foundPatternCross(stateCount))
{
AlignmentPattern confirmed = handlePossibleCenter(stateCount, i, maxJ);
if (confirmed != null)
{
return confirmed;
}
}
}
// Hmm, nothing we saw was observed and confirmed twice. If we had
// any guess at all, return it.
if (possibleCenters.Count > 0)
{
return possibleCenters[0];
}
throw NotFoundException.NotFoundInstance;
}
/// <summary>
/// Given a count of black/white/black pixels just seen and an end position,
/// figures the location of the center of this black/white/black run.
/// </summary>
private static float centerFromEnd(int[] stateCount, int end)
{
return (float)(end - stateCount[2]) - stateCount[1] / 2.0f;
}
/// <param name="stateCount"> count of black/white/black pixels just read </param>
/// <returns> true iff the proportions of the counts is close enough to the 1/1/1 ratios
/// used by alignment patterns to be considered a match </returns>
private bool foundPatternCross(int[] stateCount)
{
float moduleSize = this.moduleSize;
float maxVariance = moduleSize / 2.0f;
for (int i = 0; i < 3; i++)
{
if (Math.Abs(moduleSize - stateCount[i]) >= maxVariance)
{
return false;
}
}
return true;
}
/// <summary>
/// <p>After a horizontal scan finds a potential alignment pattern, this method
/// "cross-checks" by scanning down vertically through the center of the possible
/// alignment pattern to see if the same proportion is detected.</p>
/// </summary>
/// <param name="startI"> row where an alignment pattern was detected </param>
/// <param name="centerJ"> center of the section that appears to cross an alignment pattern </param>
/// <param name="maxCount"> maximum reasonable number of modules that should be
/// observed in any reading state, based on the results of the horizontal scan </param>
/// <returns> vertical center of alignment pattern, or <seealso cref="Float#NaN"/> if not found </returns>
private float crossCheckVertical(int startI, int centerJ, int maxCount, int originalStateCountTotal)
{
BitMatrix image = this.image;
int maxI = image.Height;
int[] stateCount = crossCheckStateCount;
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
// Start counting up from center
int i = startI;
while (i >= 0 && image.get(centerJ, i) && stateCount[1] <= maxCount)
{
stateCount[1]++;
i--;
}
// If already too many modules in this state or ran off the edge:
if (i < 0 || stateCount[1] > maxCount)
{
return float.NaN;
}
while (i >= 0 && !image.get(centerJ, i) && stateCount[0] <= maxCount)
{
stateCount[0]++;
i--;
}
if (stateCount[0] > maxCount)
{
return float.NaN;
}
// Now also count down from center
i = startI + 1;
while (i < maxI && image.get(centerJ, i) && stateCount[1] <= maxCount)
{
stateCount[1]++;
i++;
}
if (i == maxI || stateCount[1] > maxCount)
{
return float.NaN;
}
while (i < maxI && !image.get(centerJ, i) && stateCount[2] <= maxCount)
{
stateCount[2]++;
i++;
}
if (stateCount[2] > maxCount)
{
return float.NaN;
}
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2];
if (5 * Math.Abs(stateCountTotal - originalStateCountTotal) >= 2 * originalStateCountTotal)
{
return float.NaN;
}
return foundPatternCross(stateCount) ? centerFromEnd(stateCount, i) : float.NaN;
}
/// <summary>
/// <p>This is called when a horizontal scan finds a possible alignment pattern. It will
/// cross check with a vertical scan, and if successful, will see if this pattern had been
/// found on a previous horizontal scan. If so, we consider it confirmed and conclude we have
/// found the alignment pattern.</p>
/// </summary>
/// <param name="stateCount"> reading state module counts from horizontal scan </param>
/// <param name="i"> row where alignment pattern may be found </param>
/// <param name="j"> end of possible alignment pattern in row </param>
/// <returns> <seealso cref="AlignmentPattern"/> if we have found the same pattern twice, or null if not </returns>
private AlignmentPattern handlePossibleCenter(int[] stateCount, int i, int j)
{
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2];
float centerJ = centerFromEnd(stateCount, j);
float centerI = crossCheckVertical(i, (int) centerJ, 2 * stateCount[1], stateCountTotal);
if (!float.IsNaN(centerI))
{
float estimatedModuleSize = (float)(stateCount[0] + stateCount[1] + stateCount[2]) / 3.0f;
foreach (AlignmentPattern center in possibleCenters)
{
// Look for about the same center and module size:
if (center.aboutEquals(estimatedModuleSize, centerI, centerJ))
{
return center.combineEstimate(centerI, centerJ, estimatedModuleSize);
}
}
// Hadn't found this before; save it
AlignmentPattern point = new AlignmentPattern(centerJ, centerI, estimatedModuleSize);
possibleCenters.Add(point);
if (resultPointCallback != null)
{
resultPointCallback.foundPossibleResultPoint(point);
}
}
return null;
}
}
}