zxing/csharp/pdf417/detector/Detector.cs

574 lines
21 KiB
C#
Raw Normal View History

/*
* Copyright 2009 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using BinaryBitmap = com.google.zxing.BinaryBitmap;
using ReaderException = com.google.zxing.ReaderException;
using ResultPoint = com.google.zxing.ResultPoint;
using BitMatrix = com.google.zxing.common.BitMatrix;
using DetectorResult = com.google.zxing.common.DetectorResult;
using GridSampler = com.google.zxing.common.GridSampler;
namespace com.google.zxing.pdf417.detector
{
/// <summary> <p>Encapsulates logic that can detect a PDF417 Code in an image, even if the
/// PDF417 Code is rotated or skewed, or partially obscured.</p>
///
/// </summary>
/// <author> SITA Lab (kevin.osullivan@sita.aero)
/// </author>
/// <author> dswitkin@google.com (Daniel Switkin)
/// </author>
/// <author>www.Redivivus.in (suraj.supekar@redivivus.in) - Ported from ZXING Java Source
/// </author>
public sealed class Detector
{
//UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
private static int MAX_AVG_VARIANCE = (int) SupportClass.Identity(((1 << 8) * 0.42f));
//UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
private static int MAX_INDIVIDUAL_VARIANCE = (int) SupportClass.Identity(((1 << 8) * 0.8f));
private const int SKEW_THRESHOLD = 2;
// B S B S B S B S Bar/Space pattern
// 11111111 0 1 0 1 0 1 000
//UPGRADE_NOTE: Final was removed from the declaration of 'START_PATTERN'. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
private static readonly int[] START_PATTERN = new int[]{8, 1, 1, 1, 1, 1, 1, 3};
// 11111111 0 1 0 1 0 1 000
//UPGRADE_NOTE: Final was removed from the declaration of 'START_PATTERN_REVERSE'. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
private static readonly int[] START_PATTERN_REVERSE = new int[]{3, 1, 1, 1, 1, 1, 1, 8};
// 1111111 0 1 000 1 0 1 00 1
//UPGRADE_NOTE: Final was removed from the declaration of 'STOP_PATTERN'. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
private static readonly int[] STOP_PATTERN = new int[]{7, 1, 1, 3, 1, 1, 1, 2, 1};
// B S B S B S B S B Bar/Space pattern
// 1111111 0 1 000 1 0 1 00 1
//UPGRADE_NOTE: Final was removed from the declaration of 'STOP_PATTERN_REVERSE'. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
private static readonly int[] STOP_PATTERN_REVERSE = new int[]{1, 2, 1, 1, 1, 3, 1, 1, 7};
//UPGRADE_NOTE: Final was removed from the declaration of 'image '. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
private BinaryBitmap image;
public Detector(BinaryBitmap image)
{
this.image = image;
}
/// <summary> <p>Detects a PDF417 Code in an image, simply.</p>
///
/// </summary>
/// <returns> {@link DetectorResult} encapsulating results of detecting a PDF417 Code
/// </returns>
/// <throws> ReaderException if no QR Code can be found </throws>
public DetectorResult detect()
{
return detect(null);
}
/// <summary> <p>Detects a PDF417 Code in an image. Only checks 0 and 180 degree rotations.</p>
///
/// </summary>
/// <param name="hints">optional hints to detector
/// </param>
/// <returns> {@link DetectorResult} encapsulating results of detecting a PDF417 Code
/// </returns>
/// <throws> ReaderException if no PDF417 Code can be found </throws>
public DetectorResult detect(System.Collections.Hashtable hints)
{
// Fetch the 1 bit matrix once up front.
BitMatrix matrix = image.BlackMatrix;
// Try to find the vertices assuming the image is upright.
ResultPoint[] vertices = findVertices(matrix);
if (vertices == null)
{
// Maybe the image is rotated 180 degrees?
vertices = findVertices180(matrix);
if (vertices != null)
{
correctCodeWordVertices(vertices, true);
}
}
else
{
correctCodeWordVertices(vertices, false);
}
if (vertices != null)
{
float moduleWidth = computeModuleWidth(vertices);
if (moduleWidth < 1.0f)
{
throw ReaderException.Instance;
}
int dimension = computeDimension(vertices[4], vertices[6], vertices[5], vertices[7], moduleWidth);
if (dimension < 1)
{
throw ReaderException.Instance;
}
// Deskew and sample image.
BitMatrix bits = sampleGrid(matrix, vertices[4], vertices[5], vertices[6], vertices[7], dimension);
return new DetectorResult(bits, new ResultPoint[]{vertices[4], vertices[5], vertices[6], vertices[7]});
}
else
{
throw ReaderException.Instance;
}
}
/// <summary> Locate the vertices and the codewords area of a black blob using the Start
/// and Stop patterns as locators. Assumes that the barcode begins in the left half
/// of the image, and ends in the right half.
/// TODO: Fix this assumption, allowing the barcode to be anywhere in the image.
/// TODO: Scanning every row is very expensive. We should only do this for TRY_HARDER.
///
/// </summary>
/// <param name="matrix">the scanned barcode image.
/// </param>
/// <returns> an array containing the vertices:
/// vertices[0] x, y top left barcode
/// vertices[1] x, y bottom left barcode
/// vertices[2] x, y top right barcode
/// vertices[3] x, y bottom right barcode
/// vertices[4] x, y top left codeword area
/// vertices[5] x, y bottom left codeword area
/// vertices[6] x, y top right codeword area
/// vertices[7] x, y bottom right codeword area
/// </returns>
private static ResultPoint[] findVertices(BitMatrix matrix)
{
int height = matrix.Height;
int width = matrix.Width;
int halfWidth = width >> 1;
ResultPoint[] result = new ResultPoint[8];
bool found = false;
// Top Left
for (int i = 0; i < height; i++)
{
int[] loc = findGuardPattern(matrix, 0, i, halfWidth, false, START_PATTERN);
if (loc != null)
{
result[0] = new ResultPoint(loc[0], i);
result[4] = new ResultPoint(loc[1], i);
found = true;
break;
}
}
// Bottom left
if (found)
{
// Found the Top Left vertex
found = false;
for (int i = height - 1; i > 0; i--)
{
int[] loc = findGuardPattern(matrix, 0, i, halfWidth, false, START_PATTERN);
if (loc != null)
{
result[1] = new ResultPoint(loc[0], i);
result[5] = new ResultPoint(loc[1], i);
found = true;
break;
}
}
}
// Top right
if (found)
{
// Found the Bottom Left vertex
found = false;
for (int i = 0; i < height; i++)
{
int[] loc = findGuardPattern(matrix, halfWidth, i, halfWidth, false, STOP_PATTERN);
if (loc != null)
{
result[2] = new ResultPoint(loc[1], i);
result[6] = new ResultPoint(loc[0], i);
found = true;
break;
}
}
}
// Bottom right
if (found)
{
// Found the Top right vertex
found = false;
for (int i = height - 1; i > 0; i--)
{
int[] loc = findGuardPattern(matrix, halfWidth, i, halfWidth, false, STOP_PATTERN);
if (loc != null)
{
result[3] = new ResultPoint(loc[1], i);
result[7] = new ResultPoint(loc[0], i);
found = true;
break;
}
}
}
return found?result:null;
}
/// <summary> Locate the vertices and the codewords area of a black blob using the Start
/// and Stop patterns as locators. This assumes that the image is rotated 180
/// degrees and if it locates the start and stop patterns at it will re-map
/// the vertices for a 0 degree rotation.
/// TODO: Change assumption about barcode location.
/// TODO: Scanning every row is very expensive. We should only do this for TRY_HARDER.
///
/// </summary>
/// <param name="matrix">the scanned barcode image.
/// </param>
/// <returns> an array containing the vertices:
/// vertices[0] x, y top left barcode
/// vertices[1] x, y bottom left barcode
/// vertices[2] x, y top right barcode
/// vertices[3] x, y bottom right barcode
/// vertices[4] x, y top left codeword area
/// vertices[5] x, y bottom left codeword area
/// vertices[6] x, y top right codeword area
/// vertices[7] x, y bottom right codeword area
/// </returns>
private static ResultPoint[] findVertices180(BitMatrix matrix)
{
int height = matrix.Height;
int width = matrix.Width;
int halfWidth = width >> 1;
ResultPoint[] result = new ResultPoint[8];
bool found = false;
// Top Left
for (int i = height - 1; i > 0; i--)
{
int[] loc = findGuardPattern(matrix, halfWidth, i, halfWidth, true, START_PATTERN_REVERSE);
if (loc != null)
{
result[0] = new ResultPoint(loc[1], i);
result[4] = new ResultPoint(loc[0], i);
found = true;
break;
}
}
// Bottom Left
if (found)
{
// Found the Top Left vertex
found = false;
for (int i = 0; i < height; i++)
{
int[] loc = findGuardPattern(matrix, halfWidth, i, halfWidth, true, START_PATTERN_REVERSE);
if (loc != null)
{
result[1] = new ResultPoint(loc[1], i);
result[5] = new ResultPoint(loc[0], i);
found = true;
break;
}
}
}
// Top Right
if (found)
{
// Found the Bottom Left vertex
found = false;
for (int i = height - 1; i > 0; i--)
{
int[] loc = findGuardPattern(matrix, 0, i, halfWidth, false, STOP_PATTERN_REVERSE);
if (loc != null)
{
result[2] = new ResultPoint(loc[0], i);
result[6] = new ResultPoint(loc[1], i);
found = true;
break;
}
}
}
// Bottom Right
if (found)
{
// Found the Top Right vertex
found = false;
for (int i = 0; i < height; i++)
{
int[] loc = findGuardPattern(matrix, 0, i, halfWidth, false, STOP_PATTERN_REVERSE);
if (loc != null)
{
result[3] = new ResultPoint(loc[0], i);
result[7] = new ResultPoint(loc[1], i);
found = true;
break;
}
}
}
return found?result:null;
}
/// <summary> Because we scan horizontally to detect the start and stop patterns, the vertical component of
/// the codeword coordinates will be slightly wrong if there is any skew or rotation in the image.
/// This method moves those points back onto the edges of the theoretically perfect bounding
/// quadrilateral if needed.
///
/// </summary>
/// <param name="vertices">The eight vertices located by findVertices().
/// </param>
private static void correctCodeWordVertices(ResultPoint[] vertices, bool upsideDown)
{
float skew = vertices[4].Y - vertices[6].Y;
if (upsideDown)
{
skew = - skew;
}
if (skew > SKEW_THRESHOLD)
{
// Fix v4
float length = vertices[4].X - vertices[0].X;
float deltax = vertices[6].X - vertices[0].X;
float deltay = vertices[6].Y - vertices[0].Y;
float correction = length * deltay / deltax;
vertices[4] = new ResultPoint(vertices[4].X, vertices[4].Y + correction);
}
else if (- skew > SKEW_THRESHOLD)
{
// Fix v6
float length = vertices[2].X - vertices[6].X;
float deltax = vertices[2].X - vertices[4].X;
float deltay = vertices[2].Y - vertices[4].Y;
float correction = length * deltay / deltax;
vertices[6] = new ResultPoint(vertices[6].X, vertices[6].Y - correction);
}
skew = vertices[7].Y - vertices[5].Y;
if (upsideDown)
{
skew = - skew;
}
if (skew > SKEW_THRESHOLD)
{
// Fix v5
float length = vertices[5].X - vertices[1].X;
float deltax = vertices[7].X - vertices[1].X;
float deltay = vertices[7].Y - vertices[1].Y;
float correction = length * deltay / deltax;
vertices[5] = new ResultPoint(vertices[5].X, vertices[5].Y + correction);
}
else if (- skew > SKEW_THRESHOLD)
{
// Fix v7
float length = vertices[3].X - vertices[7].X;
float deltax = vertices[3].X - vertices[5].X;
float deltay = vertices[3].Y - vertices[5].Y;
float correction = length * deltay / deltax;
vertices[7] = new ResultPoint(vertices[7].X, vertices[7].Y - correction);
}
}
/// <summary> <p>Estimates module size (pixels in a module) based on the Start and End
/// finder patterns.</p>
///
/// </summary>
/// <param name="vertices">an array of vertices:
/// vertices[0] x, y top left barcode
/// vertices[1] x, y bottom left barcode
/// vertices[2] x, y top right barcode
/// vertices[3] x, y bottom right barcode
/// vertices[4] x, y top left codeword area
/// vertices[5] x, y bottom left codeword area
/// vertices[6] x, y top right codeword area
/// vertices[7] x, y bottom right codeword area
/// </param>
/// <returns> the module size.
/// </returns>
private static float computeModuleWidth(ResultPoint[] vertices)
{
float pixels1 = ResultPoint.distance(vertices[0], vertices[4]);
float pixels2 = ResultPoint.distance(vertices[1], vertices[5]);
float moduleWidth1 = (pixels1 + pixels2) / (17 * 2.0f);
float pixels3 = ResultPoint.distance(vertices[6], vertices[2]);
float pixels4 = ResultPoint.distance(vertices[7], vertices[3]);
float moduleWidth2 = (pixels3 + pixels4) / (18 * 2.0f);
return (moduleWidth1 + moduleWidth2) / 2.0f;
}
/// <summary> Computes the dimension (number of modules in a row) of the PDF417 Code
/// based on vertices of the codeword area and estimated module size.
///
/// </summary>
/// <param name="topLeft"> of codeword area
/// </param>
/// <param name="topRight"> of codeword area
/// </param>
/// <param name="bottomLeft"> of codeword area
/// </param>
/// <param name="bottomRight">of codeword are
/// </param>
/// <param name="moduleWidth">estimated module size
/// </param>
/// <returns> the number of modules in a row.
/// </returns>
private static int computeDimension(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft, ResultPoint bottomRight, float moduleWidth)
{
int topRowDimension = round(ResultPoint.distance(topLeft, topRight) / moduleWidth);
int bottomRowDimension = round(ResultPoint.distance(bottomLeft, bottomRight) / moduleWidth);
return ((((topRowDimension + bottomRowDimension) >> 1) + 8) / 17) * 17;
/*
* int topRowDimension = round(ResultPoint.distance(topLeft,
* topRight)); //moduleWidth); int bottomRowDimension =
* round(ResultPoint.distance(bottomLeft, bottomRight)); //
* moduleWidth); int dimension = ((topRowDimension + bottomRowDimension)
* >> 1); // Round up to nearest 17 modules i.e. there are 17 modules per
* codeword //int dimension = ((((topRowDimension + bottomRowDimension) >>
* 1) + 8) / 17) * 17; return dimension;
*/
}
private static BitMatrix sampleGrid(BitMatrix matrix, ResultPoint topLeft, ResultPoint bottomLeft, ResultPoint topRight, ResultPoint bottomRight, int dimension)
{
// Note that unlike the QR Code sampler, we didn't find the center of modules, but the
// very corners. So there is no 0.5f here; 0.0f is right.
GridSampler sampler = GridSampler.Instance;
return sampler.sampleGrid(matrix, dimension, 0.0f, 0.0f, dimension, 0.0f, dimension, dimension, 0.0f, dimension, topLeft.X, topLeft.Y, topRight.X, topRight.Y, bottomRight.X, bottomRight.Y, bottomLeft.X, bottomLeft.Y); // p4FromY
}
/// <summary> Ends up being a bit faster than Math.round(). This merely rounds its
/// argument to the nearest int, where x.5 rounds up.
/// </summary>
private static int round(float d)
{
//UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
return (int) (d + 0.5f);
}
/// <param name="matrix">row of black/white values to search
/// </param>
/// <param name="column">x position to start search
/// </param>
/// <param name="row">y position to start search
/// </param>
/// <param name="width">the number of pixels to search on this row
/// </param>
/// <param name="pattern">pattern of counts of number of black and white pixels that are
/// being searched for as a pattern
/// </param>
/// <returns> start/end horizontal offset of guard pattern, as an array of two ints.
/// </returns>
private static int[] findGuardPattern(BitMatrix matrix, int column, int row, int width, bool whiteFirst, int[] pattern)
{
int patternLength = pattern.Length;
// TODO: Find a way to cache this array, as this method is called hundreds of times
// per image, and we want to allocate as seldom as possible.
int[] counters = new int[patternLength];
bool isWhite = whiteFirst;
int counterPosition = 0;
int patternStart = column;
for (int x = column; x < column + width; x++)
{
bool pixel = matrix.get_Renamed(x, row);
if (pixel ^ isWhite)
{
counters[counterPosition]++;
}
else
{
if (counterPosition == patternLength - 1)
{
if (patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE) < MAX_AVG_VARIANCE)
{
return new int[]{patternStart, x};
}
patternStart += counters[0] + counters[1];
for (int y = 2; y < patternLength; y++)
{
counters[y - 2] = counters[y];
}
counters[patternLength - 2] = 0;
counters[patternLength - 1] = 0;
counterPosition--;
}
else
{
counterPosition++;
}
counters[counterPosition] = 1;
isWhite = !isWhite;
}
}
return null;
}
/// <summary> Determines how closely a set of observed counts of runs of black/white
/// values matches a given target pattern. This is reported as the ratio of
/// the total variance from the expected pattern proportions across all
/// pattern elements, to the length of the pattern.
///
/// </summary>
/// <param name="counters">observed counters
/// </param>
/// <param name="pattern">expected pattern
/// </param>
/// <param name="maxIndividualVariance">The most any counter can differ before we give up
/// </param>
/// <returns> ratio of total variance between counters and pattern compared to
/// total pattern size, where the ratio has been multiplied by 256.
/// So, 0 means no variance (perfect match); 256 means the total
/// variance between counters and patterns equals the pattern length,
/// higher values mean even more variance
/// </returns>
private static int patternMatchVariance(int[] counters, int[] pattern, int maxIndividualVariance)
{
int numCounters = counters.Length;
int total = 0;
int patternLength = 0;
for (int i = 0; i < numCounters; i++)
{
total += counters[i];
patternLength += pattern[i];
}
if (total < patternLength)
{
// If we don't even have one pixel per unit of bar width, assume this
// is too small to reliably match, so fail:
return System.Int32.MaxValue;
}
// We're going to fake floating-point math in integers. We just need to use more bits.
// Scale up patternLength so that intermediate values below like scaledCounter will have
// more "significant digits".
int unitBarWidth = (total << 8) / patternLength;
maxIndividualVariance = (maxIndividualVariance * unitBarWidth) >> 8;
int totalVariance = 0;
for (int x = 0; x < numCounters; x++)
{
int counter = counters[x] << 8;
int scaledPattern = pattern[x] * unitBarWidth;
int variance = counter > scaledPattern?counter - scaledPattern:scaledPattern - counter;
if (variance > maxIndividualVariance)
{
return System.Int32.MaxValue;
}
totalVariance += variance;
}
return totalVariance / total;
}
}
}