zxing/csharp/oned/AbstractUPCEANReader.cs

295 lines
12 KiB
C#
Raw Normal View History

/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
namespace com.google.zxing.oned
{
using System;
using System.Text;
using com.google.zxing.common;
/**
* <p>Encapsulates functionality and implementation that is common to UPC and EAN families
* of one-dimensional barcodes.</p>
*
* @author dswitkin@google.com (Daniel Switkin)
* @author Sean Owen
* @author alasdair@google.com (Alasdair Mackintosh)
*/
public abstract class AbstractUPCEANReader : AbstractOneDReader,UPCEANReader
{
private static int MAX_AVG_VARIANCE = (int) (PATTERN_MATCH_RESULT_SCALE_FACTOR * 0.42f);
private static int MAX_INDIVIDUAL_VARIANCE = (int) (PATTERN_MATCH_RESULT_SCALE_FACTOR * 0.7f);
/**
* Start/end guard pattern.
*/
private static int[] START_END_PATTERN = {1, 1, 1,};
/**
* Pattern marking the middle of a UPC/EAN pattern, separating the two halves.
*/
public static int[] MIDDLE_PATTERN = {1, 1, 1, 1, 1};
/**
* "Odd", or "L" patterns used to encode UPC/EAN digits.
*/
public static int[][] L_PATTERNS = new int[][]{
new int[]{3, 2, 1, 1}, // 0
new int[]{2, 2, 2, 1}, // 1
new int[]{2, 1, 2, 2}, // 2
new int[]{1, 4, 1, 1}, // 3
new int[]{1, 1, 3, 2}, // 4
new int[]{1, 2, 3, 1}, // 5
new int[]{1, 1, 1, 4}, // 6
new int[]{1, 3, 1, 2}, // 7
new int[]{1, 2, 1, 3}, // 8
new int[]{3, 1, 1, 2} // 9
};
/**
* As above but also including the "even", or "G" patterns used to encode UPC/EAN digits.
*/
public static int[][] L_AND_G_PATTERNS=new int[20][];
//static {
// L_AND_G_PATTERNS = new int[20][];
// for (int i = 0; i < 10; i++) {
// L_AND_G_PATTERNS[i] = L_PATTERNS[i];
// }
// for (int i = 10; i < 20; i++) {
// int[] widths = L_PATTERNS[i - 10];
// int[] reversedWidths = new int[widths.length];
// for (int j = 0; j < widths.length; j++) {
// reversedWidths[j] = widths[widths.length - j - 1];
// }
// L_AND_G_PATTERNS[i] = reversedWidths;
// }
//}
private StringBuilder decodeRowStringBuffer;
protected AbstractUPCEANReader() {
for (int i = 0; i < 10; i++) {
L_AND_G_PATTERNS[i] = L_PATTERNS[i];
}
for (int i = 10; i < 20; i++) {
int[] widths = L_PATTERNS[i - 10];
int[] reversedWidths = new int[widths.Length];
for (int j = 0; j < widths.Length; j++) {
reversedWidths[j] = widths[widths.Length - j - 1];
}
L_AND_G_PATTERNS[i] = reversedWidths;
}
decodeRowStringBuffer = new StringBuilder(20);
}
public static int[] findStartGuardPattern(BitArray row) {
bool foundStart = false;
int[] startRange = null;
int nextStart = 0;
while (!foundStart) {
startRange = findGuardPattern(row, nextStart, false, START_END_PATTERN);
int start = startRange[0];
nextStart = startRange[1];
// Make sure there is a quiet zone at least as big as the start pattern before the barcode. If
// this check would run off the left edge of the image, do not accept this barcode, as it is
// very likely to be a false positive.
int quietStart = start - (nextStart - start);
if (quietStart >= 0) {
foundStart = row.isRange(quietStart, start, false);
}
}
return startRange;
}
public override Result decodeRow(int rowNumber, BitArray row, System.Collections.Hashtable hints) {
return decodeRow(rowNumber, row, findStartGuardPattern(row));
}
public Result decodeRow(int rowNumber, BitArray row, int[] startGuardRange) {
StringBuilder result = decodeRowStringBuffer;
result.Length = 0;
int endStart = decodeMiddle(row, startGuardRange, result);
int[] endRange = decodeEnd(row, endStart);
// Make sure there is a quiet zone at least as big as the end pattern after the barcode. The
// spec might want more whitespace, but in practice this is the maximum we can count on.
int end = endRange[1];
int quietEnd = end + (end - endRange[0]);
if (quietEnd >= row.getSize() || !row.isRange(end, quietEnd, false)) {
throw new ReaderException();
}
String resultString = result.ToString();
if (!checkChecksum(resultString)) {
throw new ReaderException();
}
float left = (float) (startGuardRange[1] + startGuardRange[0]) / 2.0f;
float right = (float) (endRange[1] + endRange[0]) / 2.0f;
return new Result(resultString,
null, // no natural byte representation for these barcodes
new ResultPoint[]{
new GenericResultPoint(left, (float) rowNumber),
new GenericResultPoint(right, (float) rowNumber)},
getBarcodeFormat());
}
public abstract BarcodeFormat getBarcodeFormat();
/**
* @return {@link #checkStandardUPCEANChecksum(String)}
*/
public bool checkChecksum(String s) {
return checkStandardUPCEANChecksum(s);
}
/**
* Computes the UPC/EAN checksum on a string of digits, and reports
* whether the checksum is correct or not.
*
* @param s string of digits to check
* @return true iff string of digits passes the UPC/EAN checksum algorithm
* @throws ReaderException if the string does not contain only digits
*/
public static bool checkStandardUPCEANChecksum(String s) {
int length = s.Length;
if (length == 0) {
return false;
}
int sum = 0;
for (int i = length - 2; i >= 0; i -= 2) {
int digit = (int) s[i] - (int) '0';
if (digit < 0 || digit > 9) {
throw new ReaderException();
}
sum += digit;
}
sum *= 3;
for (int i = length - 1; i >= 0; i -= 2) {
int digit = (int) s[i] - (int) '0';
if (digit < 0 || digit > 9) {
throw new ReaderException();
}
sum += digit;
}
return sum % 10 == 0;
}
/**
* Subclasses override this to decode the portion of a barcode between the start and end guard patterns.
*
* @param row row of black/white values to search
* @param startRange start/end offset of start guard pattern
* @param resultString {@link StringBuffer} to append decoded chars to
* @return horizontal offset of first pixel after the "middle" that was decoded
* @throws ReaderException if decoding could not complete successfully
*/
protected abstract int decodeMiddle(BitArray row, int[] startRange, StringBuilder resultString);
int[] decodeEnd(BitArray row, int endStart) {
return findGuardPattern(row, endStart, false, START_END_PATTERN);
}
/**
* @param row row of black/white values to search
* @param rowOffset position to start search
* @param whiteFirst if true, indicates that the pattern specifies white/black/white/...
* pixel counts, otherwise, it is interpreted as black/white/black/...
* @param pattern pattern of counts of number of black and white pixels that are being
* searched for as a pattern
* @return start/end horizontal offset of guard pattern, as an array of two ints
* @throws ReaderException if pattern is not found
*/
public static int[] findGuardPattern(BitArray row, int rowOffset, bool whiteFirst, int[] pattern)
{
int patternLength = pattern.Length;
int[] counters = new int[patternLength];
int width = row.getSize();
bool isWhite = false;
while (rowOffset < width) {
isWhite = !row.get(rowOffset);
if (whiteFirst == isWhite) {
break;
}
rowOffset++;
}
int counterPosition = 0;
int patternStart = rowOffset;
for (int x = rowOffset; x < width; x++) {
bool pixel = row.get(x);
if ((!pixel && isWhite) || (pixel && !isWhite)) {
counters[counterPosition]++;
} else {
if (counterPosition == patternLength - 1) {
if (patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE) < MAX_AVG_VARIANCE) {
return new int[]{patternStart, x};
}
patternStart += counters[0] + counters[1];
for (int y = 2; y < patternLength; y++) {
counters[y - 2] = counters[y];
}
counters[patternLength - 2] = 0;
counters[patternLength - 1] = 0;
counterPosition--;
} else {
counterPosition++;
}
counters[counterPosition] = 1;
isWhite = !isWhite;
}
}
throw new ReaderException();
}
/**
* Attempts to decode a single UPC/EAN-encoded digit.
*
* @param row row of black/white values to decode
* @param counters the counts of runs of observed black/white/black/... values
* @param rowOffset horizontal offset to start decoding from
* @param patterns the set of patterns to use to decode -- sometimes different encodings
* for the digits 0-9 are used, and this indicates the encodings for 0 to 9 that should
* be used
* @return horizontal offset of first pixel beyond the decoded digit
* @throws ReaderException if digit cannot be decoded
*/
public static int decodeDigit(BitArray row, int[] counters, int rowOffset, int[][] patterns)
{
recordPattern(row, rowOffset, counters);
int bestVariance = MAX_AVG_VARIANCE; // worst variance we'll accept
int bestMatch = -1;
int max = patterns.Length;
for (int i = 0; i < max; i++) {
int[] pattern = patterns[i];
int variance = patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE);
if (variance < bestVariance) {
bestVariance = variance;
bestMatch = i;
}
}
if (bestMatch >= 0) {
return bestMatch;
} else {
throw new ReaderException();
}
}
}
}