mirror of
https://github.com/zxing/zxing.git
synced 2025-01-22 08:30:52 -08:00
328 lines
9 KiB
C#
328 lines
9 KiB
C#
|
/*
|
||
|
* Copyright 2007 ZXing authors
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
using System;
|
||
|
namespace com.google.zxing.common.reedsolomon
|
||
|
{
|
||
|
|
||
|
/// <summary> <p>Represents a polynomial whose coefficients are elements of GF(256).
|
||
|
/// Instances of this class are immutable.</p>
|
||
|
///
|
||
|
/// <p>Much credit is due to William Rucklidge since portions of this code are an indirect
|
||
|
/// port of his C++ Reed-Solomon implementation.</p>
|
||
|
///
|
||
|
/// </summary>
|
||
|
/// <author> Sean Owen
|
||
|
/// </author>
|
||
|
/// <author>www.Redivivus.in (suraj.supekar@redivivus.in) - Ported from ZXING Java Source
|
||
|
/// </author>
|
||
|
sealed class GF256Poly
|
||
|
{
|
||
|
internal int[] Coefficients
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
return coefficients;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
/// <returns> degree of this polynomial
|
||
|
/// </returns>
|
||
|
internal int Degree
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
return coefficients.Length - 1;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
/// <returns> true iff this polynomial is the monomial "0"
|
||
|
/// </returns>
|
||
|
internal bool Zero
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
return coefficients[0] == 0;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
//UPGRADE_NOTE: Final was removed from the declaration of 'field '. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
|
||
|
private GF256 field;
|
||
|
//UPGRADE_NOTE: Final was removed from the declaration of 'coefficients '. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
|
||
|
private int[] coefficients;
|
||
|
|
||
|
/// <param name="field">the {@link GF256} instance representing the field to use
|
||
|
/// to perform computations
|
||
|
/// </param>
|
||
|
/// <param name="coefficients">coefficients as ints representing elements of GF(256), arranged
|
||
|
/// from most significant (highest-power term) coefficient to least significant
|
||
|
/// </param>
|
||
|
/// <throws> IllegalArgumentException if argument is null or empty, </throws>
|
||
|
/// <summary> or if leading coefficient is 0 and this is not a
|
||
|
/// constant polynomial (that is, it is not the monomial "0")
|
||
|
/// </summary>
|
||
|
internal GF256Poly(GF256 field, int[] coefficients)
|
||
|
{
|
||
|
if (coefficients == null || coefficients.Length == 0)
|
||
|
{
|
||
|
throw new System.ArgumentException();
|
||
|
}
|
||
|
this.field = field;
|
||
|
int coefficientsLength = coefficients.Length;
|
||
|
if (coefficientsLength > 1 && coefficients[0] == 0)
|
||
|
{
|
||
|
// Leading term must be non-zero for anything except the constant polynomial "0"
|
||
|
int firstNonZero = 1;
|
||
|
while (firstNonZero < coefficientsLength && coefficients[firstNonZero] == 0)
|
||
|
{
|
||
|
firstNonZero++;
|
||
|
}
|
||
|
if (firstNonZero == coefficientsLength)
|
||
|
{
|
||
|
this.coefficients = field.Zero.coefficients;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
this.coefficients = new int[coefficientsLength - firstNonZero];
|
||
|
Array.Copy(coefficients, firstNonZero, this.coefficients, 0, this.coefficients.Length);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
this.coefficients = coefficients;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// <returns> coefficient of x^degree term in this polynomial
|
||
|
/// </returns>
|
||
|
internal int getCoefficient(int degree)
|
||
|
{
|
||
|
return coefficients[coefficients.Length - 1 - degree];
|
||
|
}
|
||
|
|
||
|
/// <returns> evaluation of this polynomial at a given point
|
||
|
/// </returns>
|
||
|
internal int evaluateAt(int a)
|
||
|
{
|
||
|
if (a == 0)
|
||
|
{
|
||
|
// Just return the x^0 coefficient
|
||
|
return getCoefficient(0);
|
||
|
}
|
||
|
int size = coefficients.Length;
|
||
|
if (a == 1)
|
||
|
{
|
||
|
// Just the sum of the coefficients
|
||
|
int result = 0;
|
||
|
for (int i = 0; i < size; i++)
|
||
|
{
|
||
|
result = GF256.addOrSubtract(result, coefficients[i]);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
int result2 = coefficients[0];
|
||
|
for (int i = 1; i < size; i++)
|
||
|
{
|
||
|
result2 = GF256.addOrSubtract(field.multiply(a, result2), coefficients[i]);
|
||
|
}
|
||
|
return result2;
|
||
|
}
|
||
|
|
||
|
internal GF256Poly addOrSubtract(GF256Poly other)
|
||
|
{
|
||
|
if (!field.Equals(other.field))
|
||
|
{
|
||
|
throw new System.ArgumentException("GF256Polys do not have same GF256 field");
|
||
|
}
|
||
|
if (Zero)
|
||
|
{
|
||
|
return other;
|
||
|
}
|
||
|
if (other.Zero)
|
||
|
{
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
int[] smallerCoefficients = this.coefficients;
|
||
|
int[] largerCoefficients = other.coefficients;
|
||
|
if (smallerCoefficients.Length > largerCoefficients.Length)
|
||
|
{
|
||
|
int[] temp = smallerCoefficients;
|
||
|
smallerCoefficients = largerCoefficients;
|
||
|
largerCoefficients = temp;
|
||
|
}
|
||
|
int[] sumDiff = new int[largerCoefficients.Length];
|
||
|
int lengthDiff = largerCoefficients.Length - smallerCoefficients.Length;
|
||
|
// Copy high-order terms only found in higher-degree polynomial's coefficients
|
||
|
Array.Copy(largerCoefficients, 0, sumDiff, 0, lengthDiff);
|
||
|
|
||
|
for (int i = lengthDiff; i < largerCoefficients.Length; i++)
|
||
|
{
|
||
|
sumDiff[i] = GF256.addOrSubtract(smallerCoefficients[i - lengthDiff], largerCoefficients[i]);
|
||
|
}
|
||
|
|
||
|
return new GF256Poly(field, sumDiff);
|
||
|
}
|
||
|
|
||
|
internal GF256Poly multiply(GF256Poly other)
|
||
|
{
|
||
|
if (!field.Equals(other.field))
|
||
|
{
|
||
|
throw new System.ArgumentException("GF256Polys do not have same GF256 field");
|
||
|
}
|
||
|
if (Zero || other.Zero)
|
||
|
{
|
||
|
return field.Zero;
|
||
|
}
|
||
|
int[] aCoefficients = this.coefficients;
|
||
|
int aLength = aCoefficients.Length;
|
||
|
int[] bCoefficients = other.coefficients;
|
||
|
int bLength = bCoefficients.Length;
|
||
|
int[] product = new int[aLength + bLength - 1];
|
||
|
for (int i = 0; i < aLength; i++)
|
||
|
{
|
||
|
int aCoeff = aCoefficients[i];
|
||
|
for (int j = 0; j < bLength; j++)
|
||
|
{
|
||
|
product[i + j] = GF256.addOrSubtract(product[i + j], field.multiply(aCoeff, bCoefficients[j]));
|
||
|
}
|
||
|
}
|
||
|
return new GF256Poly(field, product);
|
||
|
}
|
||
|
|
||
|
internal GF256Poly multiply(int scalar)
|
||
|
{
|
||
|
if (scalar == 0)
|
||
|
{
|
||
|
return field.Zero;
|
||
|
}
|
||
|
if (scalar == 1)
|
||
|
{
|
||
|
return this;
|
||
|
}
|
||
|
int size = coefficients.Length;
|
||
|
int[] product = new int[size];
|
||
|
for (int i = 0; i < size; i++)
|
||
|
{
|
||
|
product[i] = field.multiply(coefficients[i], scalar);
|
||
|
}
|
||
|
return new GF256Poly(field, product);
|
||
|
}
|
||
|
|
||
|
internal GF256Poly multiplyByMonomial(int degree, int coefficient)
|
||
|
{
|
||
|
if (degree < 0)
|
||
|
{
|
||
|
throw new System.ArgumentException();
|
||
|
}
|
||
|
if (coefficient == 0)
|
||
|
{
|
||
|
return field.Zero;
|
||
|
}
|
||
|
int size = coefficients.Length;
|
||
|
int[] product = new int[size + degree];
|
||
|
for (int i = 0; i < size; i++)
|
||
|
{
|
||
|
product[i] = field.multiply(coefficients[i], coefficient);
|
||
|
}
|
||
|
return new GF256Poly(field, product);
|
||
|
}
|
||
|
|
||
|
internal GF256Poly[] divide(GF256Poly other)
|
||
|
{
|
||
|
if (!field.Equals(other.field))
|
||
|
{
|
||
|
throw new System.ArgumentException("GF256Polys do not have same GF256 field");
|
||
|
}
|
||
|
if (other.Zero)
|
||
|
{
|
||
|
throw new System.ArgumentException("Divide by 0");
|
||
|
}
|
||
|
|
||
|
GF256Poly quotient = field.Zero;
|
||
|
GF256Poly remainder = this;
|
||
|
|
||
|
int denominatorLeadingTerm = other.getCoefficient(other.Degree);
|
||
|
int inverseDenominatorLeadingTerm = field.inverse(denominatorLeadingTerm);
|
||
|
|
||
|
while (remainder.Degree >= other.Degree && !remainder.Zero)
|
||
|
{
|
||
|
int degreeDifference = remainder.Degree - other.Degree;
|
||
|
int scale = field.multiply(remainder.getCoefficient(remainder.Degree), inverseDenominatorLeadingTerm);
|
||
|
GF256Poly term = other.multiplyByMonomial(degreeDifference, scale);
|
||
|
GF256Poly iterationQuotient = field.buildMonomial(degreeDifference, scale);
|
||
|
quotient = quotient.addOrSubtract(iterationQuotient);
|
||
|
remainder = remainder.addOrSubtract(term);
|
||
|
}
|
||
|
|
||
|
return new GF256Poly[]{quotient, remainder};
|
||
|
}
|
||
|
|
||
|
public override System.String ToString()
|
||
|
{
|
||
|
System.Text.StringBuilder result = new System.Text.StringBuilder(8 * Degree);
|
||
|
for (int degree = Degree; degree >= 0; degree--)
|
||
|
{
|
||
|
int coefficient = getCoefficient(degree);
|
||
|
if (coefficient != 0)
|
||
|
{
|
||
|
if (coefficient < 0)
|
||
|
{
|
||
|
result.Append(" - ");
|
||
|
coefficient = - coefficient;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (result.Length > 0)
|
||
|
{
|
||
|
result.Append(" + ");
|
||
|
}
|
||
|
}
|
||
|
if (degree == 0 || coefficient != 1)
|
||
|
{
|
||
|
int alphaPower = field.log(coefficient);
|
||
|
if (alphaPower == 0)
|
||
|
{
|
||
|
result.Append('1');
|
||
|
}
|
||
|
else if (alphaPower == 1)
|
||
|
{
|
||
|
result.Append('a');
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
result.Append("a^");
|
||
|
result.Append(alphaPower);
|
||
|
}
|
||
|
}
|
||
|
if (degree != 0)
|
||
|
{
|
||
|
if (degree == 1)
|
||
|
{
|
||
|
result.Append('x');
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
result.Append("x^");
|
||
|
result.Append(degree);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return result.ToString();
|
||
|
}
|
||
|
}
|
||
|
}
|