zxing/csharp/common/reedsolomon/GF256Poly.cs

328 lines
9 KiB
C#
Raw Normal View History

/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
namespace com.google.zxing.common.reedsolomon
{
/// <summary> <p>Represents a polynomial whose coefficients are elements of GF(256).
/// Instances of this class are immutable.</p>
///
/// <p>Much credit is due to William Rucklidge since portions of this code are an indirect
/// port of his C++ Reed-Solomon implementation.</p>
///
/// </summary>
/// <author> Sean Owen
/// </author>
/// <author>www.Redivivus.in (suraj.supekar@redivivus.in) - Ported from ZXING Java Source
/// </author>
sealed class GF256Poly
{
internal int[] Coefficients
{
get
{
return coefficients;
}
}
/// <returns> degree of this polynomial
/// </returns>
internal int Degree
{
get
{
return coefficients.Length - 1;
}
}
/// <returns> true iff this polynomial is the monomial "0"
/// </returns>
internal bool Zero
{
get
{
return coefficients[0] == 0;
}
}
//UPGRADE_NOTE: Final was removed from the declaration of 'field '. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
private GF256 field;
//UPGRADE_NOTE: Final was removed from the declaration of 'coefficients '. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
private int[] coefficients;
/// <param name="field">the {@link GF256} instance representing the field to use
/// to perform computations
/// </param>
/// <param name="coefficients">coefficients as ints representing elements of GF(256), arranged
/// from most significant (highest-power term) coefficient to least significant
/// </param>
/// <throws> IllegalArgumentException if argument is null or empty, </throws>
/// <summary> or if leading coefficient is 0 and this is not a
/// constant polynomial (that is, it is not the monomial "0")
/// </summary>
internal GF256Poly(GF256 field, int[] coefficients)
{
if (coefficients == null || coefficients.Length == 0)
{
throw new System.ArgumentException();
}
this.field = field;
int coefficientsLength = coefficients.Length;
if (coefficientsLength > 1 && coefficients[0] == 0)
{
// Leading term must be non-zero for anything except the constant polynomial "0"
int firstNonZero = 1;
while (firstNonZero < coefficientsLength && coefficients[firstNonZero] == 0)
{
firstNonZero++;
}
if (firstNonZero == coefficientsLength)
{
this.coefficients = field.Zero.coefficients;
}
else
{
this.coefficients = new int[coefficientsLength - firstNonZero];
Array.Copy(coefficients, firstNonZero, this.coefficients, 0, this.coefficients.Length);
}
}
else
{
this.coefficients = coefficients;
}
}
/// <returns> coefficient of x^degree term in this polynomial
/// </returns>
internal int getCoefficient(int degree)
{
return coefficients[coefficients.Length - 1 - degree];
}
/// <returns> evaluation of this polynomial at a given point
/// </returns>
internal int evaluateAt(int a)
{
if (a == 0)
{
// Just return the x^0 coefficient
return getCoefficient(0);
}
int size = coefficients.Length;
if (a == 1)
{
// Just the sum of the coefficients
int result = 0;
for (int i = 0; i < size; i++)
{
result = GF256.addOrSubtract(result, coefficients[i]);
}
return result;
}
int result2 = coefficients[0];
for (int i = 1; i < size; i++)
{
result2 = GF256.addOrSubtract(field.multiply(a, result2), coefficients[i]);
}
return result2;
}
internal GF256Poly addOrSubtract(GF256Poly other)
{
if (!field.Equals(other.field))
{
throw new System.ArgumentException("GF256Polys do not have same GF256 field");
}
if (Zero)
{
return other;
}
if (other.Zero)
{
return this;
}
int[] smallerCoefficients = this.coefficients;
int[] largerCoefficients = other.coefficients;
if (smallerCoefficients.Length > largerCoefficients.Length)
{
int[] temp = smallerCoefficients;
smallerCoefficients = largerCoefficients;
largerCoefficients = temp;
}
int[] sumDiff = new int[largerCoefficients.Length];
int lengthDiff = largerCoefficients.Length - smallerCoefficients.Length;
// Copy high-order terms only found in higher-degree polynomial's coefficients
Array.Copy(largerCoefficients, 0, sumDiff, 0, lengthDiff);
for (int i = lengthDiff; i < largerCoefficients.Length; i++)
{
sumDiff[i] = GF256.addOrSubtract(smallerCoefficients[i - lengthDiff], largerCoefficients[i]);
}
return new GF256Poly(field, sumDiff);
}
internal GF256Poly multiply(GF256Poly other)
{
if (!field.Equals(other.field))
{
throw new System.ArgumentException("GF256Polys do not have same GF256 field");
}
if (Zero || other.Zero)
{
return field.Zero;
}
int[] aCoefficients = this.coefficients;
int aLength = aCoefficients.Length;
int[] bCoefficients = other.coefficients;
int bLength = bCoefficients.Length;
int[] product = new int[aLength + bLength - 1];
for (int i = 0; i < aLength; i++)
{
int aCoeff = aCoefficients[i];
for (int j = 0; j < bLength; j++)
{
product[i + j] = GF256.addOrSubtract(product[i + j], field.multiply(aCoeff, bCoefficients[j]));
}
}
return new GF256Poly(field, product);
}
internal GF256Poly multiply(int scalar)
{
if (scalar == 0)
{
return field.Zero;
}
if (scalar == 1)
{
return this;
}
int size = coefficients.Length;
int[] product = new int[size];
for (int i = 0; i < size; i++)
{
product[i] = field.multiply(coefficients[i], scalar);
}
return new GF256Poly(field, product);
}
internal GF256Poly multiplyByMonomial(int degree, int coefficient)
{
if (degree < 0)
{
throw new System.ArgumentException();
}
if (coefficient == 0)
{
return field.Zero;
}
int size = coefficients.Length;
int[] product = new int[size + degree];
for (int i = 0; i < size; i++)
{
product[i] = field.multiply(coefficients[i], coefficient);
}
return new GF256Poly(field, product);
}
internal GF256Poly[] divide(GF256Poly other)
{
if (!field.Equals(other.field))
{
throw new System.ArgumentException("GF256Polys do not have same GF256 field");
}
if (other.Zero)
{
throw new System.ArgumentException("Divide by 0");
}
GF256Poly quotient = field.Zero;
GF256Poly remainder = this;
int denominatorLeadingTerm = other.getCoefficient(other.Degree);
int inverseDenominatorLeadingTerm = field.inverse(denominatorLeadingTerm);
while (remainder.Degree >= other.Degree && !remainder.Zero)
{
int degreeDifference = remainder.Degree - other.Degree;
int scale = field.multiply(remainder.getCoefficient(remainder.Degree), inverseDenominatorLeadingTerm);
GF256Poly term = other.multiplyByMonomial(degreeDifference, scale);
GF256Poly iterationQuotient = field.buildMonomial(degreeDifference, scale);
quotient = quotient.addOrSubtract(iterationQuotient);
remainder = remainder.addOrSubtract(term);
}
return new GF256Poly[]{quotient, remainder};
}
public override System.String ToString()
{
System.Text.StringBuilder result = new System.Text.StringBuilder(8 * Degree);
for (int degree = Degree; degree >= 0; degree--)
{
int coefficient = getCoefficient(degree);
if (coefficient != 0)
{
if (coefficient < 0)
{
result.Append(" - ");
coefficient = - coefficient;
}
else
{
if (result.Length > 0)
{
result.Append(" + ");
}
}
if (degree == 0 || coefficient != 1)
{
int alphaPower = field.log(coefficient);
if (alphaPower == 0)
{
result.Append('1');
}
else if (alphaPower == 1)
{
result.Append('a');
}
else
{
result.Append("a^");
result.Append(alphaPower);
}
}
if (degree != 0)
{
if (degree == 1)
{
result.Append('x');
}
else
{
result.Append("x^");
result.Append(degree);
}
}
}
}
return result.ToString();
}
}
}