More javadoc

git-svn-id: https://zxing.googlecode.com/svn/trunk@14 59b500cc-1b3d-0410-9834-0bbf25fbcc57
This commit is contained in:
srowen 2007-11-07 06:42:22 +00:00
parent d6cfb083a1
commit 0aeb2f672c
6 changed files with 249 additions and 69 deletions

View file

@ -19,6 +19,9 @@ package com.google.zxing.qrcode.detector;
import com.google.zxing.ResultPoint;
/**
* <p>Encapsulates an alignment pattern, which are the smaller square patterns found in
* all but the simplest QR Codes.</p>
*
* @author srowen@google.com (Sean Owen)
*/
public final class AlignmentPattern implements ResultPoint {
@ -45,6 +48,10 @@ public final class AlignmentPattern implements ResultPoint {
return estimatedModuleSize;
}
/**
* <p>Determines if this alignment pattern "about equals" an alignment pattern at the stated
* position and size -- meaning, it is at nearly the same center with nearly the same size.</p>
*/
boolean aboutEquals(float moduleSize, float i, float j) {
return
Math.abs(i - posY) <= moduleSize &&

View file

@ -23,8 +23,15 @@ import com.google.zxing.common.BitArray;
import java.util.Vector;
/**
* <p>This class attempts to find alignment patterns in a QR Code. Alignment patterns look like finder
* patterns but are smaller and appear at regular intervals throughout the image.</p>
*
* <p>At the moment this only looks for the bottom-right alignment pattern.</p>
*
* <p>This is mostly a simplified copy of {@link FinderPatternFinder}. It is copied,
* pasted and stripped down here for maximum performance but does unfortunately duplicate
* some code.</p>
*
* <p>This class is not thread-safe.</p>
*
* @author srowen@google.com (Sean Owen)
@ -39,6 +46,16 @@ final class AlignmentPatternFinder {
private final int height;
private final float moduleSize;
/**
* <p>Creates a finder that will look in a portion of the whole image.</p>
*
* @param image image to search
* @param startX left column from which to start searching
* @param startY top row from which to start searching
* @param width width of region to search
* @param height height of region to search
* @param moduleSize estimated module size so far
*/
AlignmentPatternFinder(MonochromeBitmapSource image,
int startX,
int startY,
@ -54,17 +71,25 @@ final class AlignmentPatternFinder {
this.moduleSize = moduleSize;
}
/**
* <p>This method attempts to find the bottom-right alignment pattern in the image. It is a bit messy since
* it's pretty performance-critical and so is written to be fast foremost.</p>
*
* @return {@link AlignmentPattern} if found
* @throws ReaderException if not found
*/
AlignmentPattern find() throws ReaderException {
int startX = this.startX;
int height = this.height;
int maxJ = startX + width;
int middleI = startY + (height >> 1);
BitArray luminanceRow = new BitArray(width);
int[] stateCount = new int[3]; // looking for 1 1 1
// We are looking for black/white/black modules in 1:1:1 ratio;
// this tracks the number of black/white/black modules seen so far
int[] stateCount = new int[3];
for (int iGen = 0; iGen < height; iGen++) {
// Search from middle outwards
int i = middleI +
((iGen & 0x01) == 0 ? ((iGen + 1) >> 1) : -((iGen + 1) >> 1));
int i = middleI + ((iGen & 0x01) == 0 ? ((iGen + 1) >> 1) : -((iGen + 1) >> 1));
image.getBlackRow(i, luminanceRow, startX, width);
stateCount[0] = 0;
stateCount[1] = 0;
@ -85,8 +110,7 @@ final class AlignmentPatternFinder {
} else { // Counting white pixels
if (currentState == 2) { // A winner?
if (foundPatternCross(stateCount)) { // Yes
AlignmentPattern confirmed =
handlePossibleCenter(stateCount, i, j);
AlignmentPattern confirmed = handlePossibleCenter(stateCount, i, j);
if (confirmed != null) {
return confirmed;
}
@ -125,10 +149,19 @@ final class AlignmentPatternFinder {
throw new ReaderException("Could not find alignment pattern");
}
/**
* Given a count of black/white/black pixels just seen and an end position,
* figures the location of the center of this black/white/black run.
*/
private static float centerFromEnd(int[] stateCount, int end) {
return (float) (end - stateCount[2]) - stateCount[1] / 2.0f;
}
/**
* @param stateCount count of black/white/black pixels just read
* @return true iff the proportions of the counts is close enough to the 1/1/1 ratios
* used by alignment patterns to be considered a match
*/
private boolean foundPatternCross(int[] stateCount) {
float moduleSize = this.moduleSize;
for (int i = 0; i < 3; i++) {
@ -139,16 +172,30 @@ final class AlignmentPatternFinder {
return true;
}
/**
* <p>After a horizontal scan finds a potential alignment pattern, this method
* "cross-checks" by scanning down vertically through the center of the possible
* alignment pattern to see if the same proportion is detected.</p>
*
* @param startI row where an alignment pattern was detected
* @param centerJ center of the section that appears to cross an alignment pattern
* @param maxCount maximum reasonable number of modules that should be
* observed in any reading state, based on the results of the horizontal scan
* @return vertical center of alignment pattern, or {@link Float#NaN} if not found
*/
private float crossCheckVertical(int startI, int centerJ, int maxCount) {
MonochromeBitmapSource image = this.image;
int maxI = image.getHeight();
int[] stateCount = new int[3];
// Start counting up from center
int i = startI;
while (i >= 0 && image.isBlack(centerJ, i) && stateCount[1] <= maxCount) {
stateCount[1]++;
i--;
}
// If already too many modules in this state or ran off the edge:
if (i < 0 || stateCount[1] > maxCount) {
return Float.NaN;
}
@ -160,17 +207,16 @@ final class AlignmentPatternFinder {
return Float.NaN;
}
// Now also count down from center
i = startI + 1;
while (i < maxI && image.isBlack(centerJ, i) &&
stateCount[1] <= maxCount) {
while (i < maxI && image.isBlack(centerJ, i) && stateCount[1] <= maxCount) {
stateCount[1]++;
i++;
}
if (i == maxI || stateCount[1] > maxCount) {
return Float.NaN;
}
while (i < maxI && !image.isBlack(centerJ, i) &&
stateCount[2] <= maxCount) {
while (i < maxI && !image.isBlack(centerJ, i) && stateCount[2] <= maxCount) {
stateCount[2]++;
i++;
}
@ -178,21 +224,25 @@ final class AlignmentPatternFinder {
return Float.NaN;
}
return
foundPatternCross(stateCount) ?
centerFromEnd(stateCount, i) :
Float.NaN;
return foundPatternCross(stateCount) ? centerFromEnd(stateCount, i) : Float.NaN;
}
private AlignmentPattern handlePossibleCenter(int[] stateCount,
int i,
int j) {
/**
* <p>This is called when a horizontal scan finds a possible alignment pattern. It will
* cross check with a vertical scan, and if successful, will see if this pattern had been
* found on a previous horizontal scan. If so, we consider it confirmed and conclude we have
* found the alignment pattern.</p>
*
* @param stateCount reading state module counts from horizontal scan
* @param i row where alignment pattern may be found
* @param j end of possible alignment pattern in row
* @return {@link AlignmentPattern} if we have found the same pattern twice, or null if not
*/
private AlignmentPattern handlePossibleCenter(int[] stateCount, int i, int j) {
float centerJ = centerFromEnd(stateCount, j);
float centerI = crossCheckVertical(i, (int) centerJ, 2 * stateCount[1]);
if (!Float.isNaN(centerI)) {
float estimatedModuleSize = (float) (stateCount[0] +
stateCount[1] +
stateCount[2]) / 3.0f;
float estimatedModuleSize = (float) (stateCount[0] + stateCount[1] + stateCount[2]) / 3.0f;
int max = possibleCenters.size();
for (int index = 0; index < max; index++) {
AlignmentPattern center = (AlignmentPattern) possibleCenters.elementAt(index);

View file

@ -23,6 +23,9 @@ import com.google.zxing.common.BitMatrix;
import com.google.zxing.qrcode.decoder.Version;
/**
* <p>Encapsulates logic that can detect a QR Code in an image, even if the QR Code
* is rotated or skewed, or partially obscured.</p>
*
* @author srowen@google.com (Sean Owen)
*/
public final class Detector {
@ -33,6 +36,12 @@ public final class Detector {
this.image = image;
}
/**
* <p>Detects a QR Code in an image, simply.</p>
*
* @return {@link DetectorResult} encapsulating results of detecting a QR Code
* @throws ReaderException if no QR Code can be found
*/
public DetectorResult detect() throws ReaderException {
MonochromeBitmapSource image = this.image;
@ -71,7 +80,7 @@ public final class Detector {
estAlignmentY,
(float) i);
break;
} catch (ReaderException de) {
} catch (ReaderException re) {
// try next round
}
}
@ -82,12 +91,7 @@ public final class Detector {
}
GridSampler sampler = GridSampler.getInstance();
BitMatrix bits = sampler.sampleGrid(image,
topLeft,
topRight,
bottomLeft,
alignmentPattern,
dimension);
BitMatrix bits = sampler.sampleGrid(image, topLeft, topRight, bottomLeft, alignmentPattern, dimension);
/*
try {
@ -104,8 +108,7 @@ public final class Detector {
}
}
}
ImageIO.write(outImage, "PNG",
new File("/home/srowen/out.png"));
ImageIO.write(outImage, "PNG", new File("/tmp/out.png"));
} catch (IOException ioe) {
ioe.printStackTrace();
}
@ -120,15 +123,16 @@ public final class Detector {
return new DetectorResult(bits, points);
}
/**
* <p>Computes the dimension (number of modules on a size) of the QR Code based on the position
* of the finder patterns and estimated module size.</p>
*/
private static int computeDimension(ResultPoint topLeft,
ResultPoint topRight,
ResultPoint bottomLeft,
float moduleSize)
throws ReaderException {
int tltrCentersDimension =
round(FinderPatternFinder.distance(topLeft, topRight) / moduleSize);
int tlblCentersDimension =
round(FinderPatternFinder.distance(topLeft, bottomLeft) / moduleSize);
float moduleSize) throws ReaderException {
int tltrCentersDimension = round(FinderPatternFinder.distance(topLeft, topRight) / moduleSize);
int tlblCentersDimension = round(FinderPatternFinder.distance(topLeft, bottomLeft) / moduleSize);
int dimension = ((tltrCentersDimension + tlblCentersDimension) >> 1) + 7;
switch (dimension & 0x03) { // mod 4
case 0:
@ -144,16 +148,22 @@ public final class Detector {
return dimension;
}
private float calculateModuleSize(ResultPoint topLeft,
ResultPoint topRight,
ResultPoint bottomLeft) {
/**
* <p>Computes an average estimated module size based on estimated derived from the positions
* of the three finder patterns.</p>
*/
private float calculateModuleSize(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft) {
// Take the average
return (calculateModuleSizeOneWay(topLeft, topRight) +
calculateModuleSizeOneWay(topLeft, bottomLeft)) / 2.0f;
}
private float calculateModuleSizeOneWay(ResultPoint pattern,
ResultPoint otherPattern) {
/**
* <p>Estimates module size based on two finder patterns -- it uses
* {@link #sizeOfBlackWhiteBlackRunBothWays(int, int, int, int)} to figure the
* width of each, measuring along the axis between their centers.</p>
*/
private float calculateModuleSizeOneWay(ResultPoint pattern, ResultPoint otherPattern) {
float moduleSizeEst1 = sizeOfBlackWhiteBlackRunBothWays((int) pattern.getX(),
(int) pattern.getY(),
(int) otherPattern.getX(),
@ -173,12 +183,25 @@ public final class Detector {
return (moduleSizeEst1 + moduleSizeEst2) / 14.0f;
}
/**
* See {@link #sizeOfBlackWhiteBlackRun(int, int, int, int)}; computes the total width of
* a finder pattern by looking for a black-white-black run from the center in the direction
* of another point (another finder pattern center), and in the opposite direction too.</p>
*/
private float sizeOfBlackWhiteBlackRunBothWays(int fromX, int fromY, int toX, int toY) {
float result = sizeOfBlackWhiteBlackRun(fromX, fromY, toX, toY);
result += sizeOfBlackWhiteBlackRun(fromX, fromY, fromX - (toX - fromX), fromY - (toY - fromY));
return result - 1.0f; // -1 because we counted the middle pixel twice
}
/**
* <p>This method traces a line from a point in the image, in the direction towards another point.
* It begins in a black region, and keeps going until it finds white, then black, then white again.
* It reports the distance from the start to this point.</p>
*
* <p>This is used when figuring out how wide a finder pattern is, when the finder pattern
* may be skewed or rotated.</p>
*/
private float sizeOfBlackWhiteBlackRun(int fromX, int fromY, int toX, int toY) {
// Mild variant of Bresenham's algorithm;
// see http://en.wikipedia.org/wiki/Bresenham's_line_algorithm
@ -227,6 +250,17 @@ public final class Detector {
return Float.NaN;
}
/**
* <p>Attempts to locate an alignment pattern in a limited region of the image, which is
* guessed to contain it. This method uses {@link AlignmentPattern}.</p>
*
* @param overallEstModuleSize estimated module size so far
* @param estAlignmentX x coordinate of center of area probably containing alignment pattern
* @param estAlignmentY y coordinate of above
* @param allowanceFactor number of pixels in all directons to search from the center
* @return {@link AlignmentPattern} if found, or null otherwise
* @throws ReaderException if an unexpected error occurs during detection
*/
private AlignmentPattern findAlignmentInRegion(float overallEstModuleSize,
int estAlignmentX,
int estAlignmentY,
@ -236,11 +270,9 @@ public final class Detector {
// should be
int allowance = (int) (allowanceFactor * overallEstModuleSize);
int alignmentAreaLeftX = Math.max(0, estAlignmentX - allowance);
int alignmentAreaRightX = Math.min(image.getWidth() - 1,
estAlignmentX + allowance);
int alignmentAreaRightX = Math.min(image.getWidth() - 1, estAlignmentX + allowance);
int alignmentAreaTopY = Math.max(0, estAlignmentY - allowance);
int alignmentAreaBottomY = Math.min(image.getHeight() - 1,
estAlignmentY + allowance);
int alignmentAreaBottomY = Math.min(image.getHeight() - 1, estAlignmentY + allowance);
AlignmentPatternFinder alignmentFinder =
new AlignmentPatternFinder(
@ -254,7 +286,8 @@ public final class Detector {
}
/**
* Ends up being a bit faster than Math.round()
* Ends up being a bit faster than Math.round(). This merely rounds its argument to the nearest int,
* where x.5 rounds up.
*/
private static int round(float d) {
return (int) (d + 0.5f);

View file

@ -19,6 +19,10 @@ package com.google.zxing.qrcode.detector;
import com.google.zxing.ResultPoint;
/**
* <p>Encapsulates a finder pattern, which are the three square patterns found in
* the corners of QR Codes. It also encapsulates a count of similar finder patterns,
* as a convenience to {@link FinderPatternFinder}'s bookkeeping.</p>
*
* @author srowen@google.com (Sean Owen)
*/
public final class FinderPattern implements ResultPoint {
@ -55,6 +59,10 @@ public final class FinderPattern implements ResultPoint {
this.count++;
}
/**
* <p>Determines if this finder pattern "about equals" a finder pattern at the stated
* position and size -- meaning, it is at nearly the same center with nearly the same size.</p>
*/
boolean aboutEquals(float moduleSize, float i, float j) {
return Math.abs(i - posY) <= moduleSize &&
Math.abs(j - posX) <= moduleSize &&

View file

@ -26,6 +26,9 @@ import com.google.zxing.common.Comparator;
import java.util.Vector;
/**
* <p>This class attempts to find finder patterns in a QR Code. Finder patterns are the square
* markers at three corners of a QR Code.</p>
*
* <p>This class is not thread-safe and should not be reused.</p>
*
* @author srowen@google.com (Sean Owen)
@ -39,6 +42,11 @@ final class FinderPatternFinder {
private final Vector possibleCenters;
private boolean hasSkipped;
/**
* <p>Creates a finder that will search the image for three finder patterns.</p>
*
* @param image image to search
*/
FinderPatternFinder(MonochromeBitmapSource image) {
this.image = image;
this.possibleCenters = new Vector(5);
@ -47,13 +55,16 @@ final class FinderPatternFinder {
FinderPatternInfo find() throws ReaderException {
int maxI = image.getHeight();
int maxJ = image.getWidth();
int[] stateCount = new int[5]; // looking for 1 1 3 1 1
// We are looking for black/white/black/white/black modules in
// 1:1:3:1:1 ratio; this tracks the number of such modules seen so far
int[] stateCount = new int[5];
boolean done = false;
// We can afford to examine every few lines until we've started finding
// the patterns
int iSkip = BIG_SKIP;
for (int i = iSkip - 1; i < maxI && !done; i += iSkip) {
BitArray luminanceRow = image.getBlackRow(i, null, 0, maxJ);
// Get a row of black/white values
BitArray blackRow = image.getBlackRow(i, null, 0, maxJ);
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
@ -61,7 +72,7 @@ final class FinderPatternFinder {
stateCount[4] = 0;
int currentState = 0;
for (int j = 0; j < maxJ; j++) {
if (luminanceRow.get(j)) {
if (blackRow.get(j)) {
// Black pixel
if ((currentState & 1) == 1) { // Counting white pixels
currentState++;
@ -71,8 +82,7 @@ final class FinderPatternFinder {
if ((currentState & 1) == 0) { // Counting black pixels
if (currentState == 4) { // A winner?
if (foundPatternCross(stateCount)) { // Yes
boolean confirmed =
handlePossibleCenter(stateCount, i, j);
boolean confirmed = handlePossibleCenter(stateCount, i, j);
if (confirmed) {
iSkip = 1; // Go back to examining each line
if (hasSkipped) {
@ -96,7 +106,7 @@ final class FinderPatternFinder {
// Advance to next black pixel
do {
j++;
} while (j < maxJ && !luminanceRow.get(j));
} while (j < maxJ && !blackRow.get(j));
j--; // back up to that last white pixel
}
// Clear state to start looking again
@ -141,14 +151,22 @@ final class FinderPatternFinder {
totalModuleSize += patternInfo[i].getEstimatedModuleSize();
}
return new FinderPatternInfo(totalModuleSize / (float) patternInfo.length,
patternInfo);
return new FinderPatternInfo(totalModuleSize / (float) patternInfo.length, patternInfo);
}
/**
* Given a count of black/white/black/white/black pixels just seen and an end position,
* figures the location of the center of this run.
*/
private static float centerFromEnd(int[] stateCount, int end) {
return (float) (end - stateCount[4] - stateCount[3]) - stateCount[2] / 2.0f;
}
/**
* @param stateCount count of black/white/black/white/black pixels just read
* @return true iff the proportions of the counts is close enough to the 1/13/1/1 ratios
* used by finder patterns to be considered a match
*/
private static boolean foundPatternCross(int[] stateCount) {
int totalModuleSize = 0;
for (int i = 0; i < 5; i++) {
@ -162,20 +180,31 @@ final class FinderPatternFinder {
}
int moduleSize = totalModuleSize / 7;
// Allow less than 50% deviance from 1-1-3-1-1 pattern
return
Math.abs(moduleSize - stateCount[0]) << 1 <= moduleSize &&
return Math.abs(moduleSize - stateCount[0]) << 1 <= moduleSize &&
Math.abs(moduleSize - stateCount[1]) << 1 <= moduleSize &&
Math.abs(3 * moduleSize - stateCount[2]) << 1 <= 3 * moduleSize &&
Math.abs(moduleSize - stateCount[3]) << 1 <= moduleSize &&
Math.abs(moduleSize - stateCount[4]) << 1 <= moduleSize;
}
/**
* <p>After a horizontal scan finds a potential finder pattern, this method
* "cross-checks" by scanning down vertically through the center of the possible
* finder pattern to see if the same proportion is detected.</p>
*
* @param startI row where a finder pattern was detected
* @param centerJ center of the section that appears to cross a finder pattern
* @param maxCount maximum reasonable number of modules that should be
* observed in any reading state, based on the results of the horizontal scan
* @return vertical center of finder pattern, or {@link Float#NaN} if not found
*/
private float crossCheckVertical(int startI, int centerJ, int maxCount) {
MonochromeBitmapSource image = this.image;
int maxI = image.getHeight();
int[] stateCount = new int[5];
// Start counting up from center
int i = startI;
while (i >= 0 && image.isBlack(centerJ, i)) {
stateCount[2]++;
@ -200,6 +229,7 @@ final class FinderPatternFinder {
return Float.NaN;
}
// Now also count down from center
i = startI + 1;
while (i < maxI && image.isBlack(centerJ, i)) {
stateCount[2]++;
@ -226,6 +256,11 @@ final class FinderPatternFinder {
return foundPatternCross(stateCount) ? centerFromEnd(stateCount, i) : Float.NaN;
}
/**
* <p>Like {@link #crossCheckVertical(int, int, int)}, and in fact is basically identical,
* except it reads horizontally instead of vertically. This is used to cross-cross
* check a vertical cross check and locate the real center of the alignment pattern.</p>
*/
private float crossCheckHorizontal(int startJ, int centerI, int maxCount) {
MonochromeBitmapSource image = this.image;
@ -244,7 +279,6 @@ final class FinderPatternFinder {
stateCount[1]++;
j--;
}
// If already too many modules in this state or ran off the edge:
if (j < 0 || stateCount[1] > maxCount) {
return Float.NaN;
}
@ -282,6 +316,22 @@ final class FinderPatternFinder {
return foundPatternCross(stateCount) ? centerFromEnd(stateCount, j) : Float.NaN;
}
/**
* <p>This is called when a horizontal scan finds a possible alignment pattern. It will
* cross check with a vertical scan, and if successful, will, ah, cross-cross-check
* with another horizontal scan. This is needed primarily to locate the real horizontal
* center of the pattern in cases of extreme skew.</p>
*
* <p>If that succeeds the finder pattern location is added to a list that tracks
* the number of times each location has been nearly-matched as a finder pattern.
* Each additional find is more evidence that the location is in fact a finder
* pattern center
*
* @param stateCount reading state module counts from horizontal scan
* @param i row where finder pattern may be found
* @param j end of possible finder pattern in row
* @return true if a finder pattern candidate was found this time
*/
private boolean handlePossibleCenter(int[] stateCount,
int i,
int j) {
@ -291,11 +341,8 @@ final class FinderPatternFinder {
// Re-cross check
centerJ = crossCheckHorizontal((int) centerJ, (int) centerI, stateCount[2]);
if (!Float.isNaN(centerJ)) {
float estimatedModuleSize = (float) (stateCount[0] +
stateCount[1] +
stateCount[2] +
stateCount[3] +
stateCount[4]) / 7.0f;
float estimatedModuleSize =
(float) (stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]) / 7.0f;
boolean found = false;
int max = possibleCenters.size();
for (int index = 0; index < max; index++) {
@ -308,8 +355,7 @@ final class FinderPatternFinder {
}
}
if (!found) {
possibleCenters.addElement(
new FinderPattern(centerJ, centerI, estimatedModuleSize));
possibleCenters.addElement(new FinderPattern(centerJ, centerI, estimatedModuleSize));
}
return true;
}
@ -317,6 +363,12 @@ final class FinderPatternFinder {
return false;
}
/**
* @return number of rows we could safely skip during scanning, based on the first
* two finder patterns that have been located. In some cases their position will
* allow us to infer that the third pattern must lie below a certain point farther
* down in the image.
*/
private int findRowSkip() {
int max = possibleCenters.size();
if (max <= 1) {
@ -343,6 +395,10 @@ final class FinderPatternFinder {
return 0;
}
/**
* @return true iff we have found at least 3 finder patterns that have been detected
* at least {@link #CENTER_QUORUM} times each
*/
private boolean haveMulitplyConfirmedCenters() {
int count = 0;
int max = possibleCenters.size();
@ -356,6 +412,12 @@ final class FinderPatternFinder {
return false;
}
/**
* @return the 3 best {@link FinderPattern}s from our list of candidates. The "best" are
* those that have been detected at least {@link #CENTER_QUORUM} times, and whose module
* size differs from the average among those patterns the least
* @throws ReaderException if 3 such finder patterns do not exist
*/
private FinderPattern[] selectBestPatterns() throws ReaderException {
Collections.insertionSort(possibleCenters, new CenterComparator());
int size = 0;
@ -393,11 +455,9 @@ final class FinderPatternFinder {
}
averageModuleSize /= (float) size;
Collections.insertionSort(
possibleCenters,
new ClosestToAverageComparator(averageModuleSize));
// We don't have java.util.Collections in J2ME
Collections.insertionSort(possibleCenters, new ClosestToAverageComparator(averageModuleSize));
//return confirmedCenters.subList(0, 3).toArray(new FinderPattern[3]);
FinderPattern[] result = new FinderPattern[3];
for (int i = 0; i < 3; i++) {
result[i] = (FinderPattern) possibleCenters.elementAt(i);
@ -405,6 +465,15 @@ final class FinderPatternFinder {
return result;
}
/**
* <p>Having found three "best" finder patterns we need to decide which is the top-left, top-right,
* bottom-left. We assume that the one closest to the other two is the top-left one; this is not
* strictly true (imagine extreme perspective distortion) but for the moment is a serviceable assumption.
* Lastly we sort top-right from bottom-left by figuring out orientation from vector cross products.</p>
*
* @param patterns three best {@link FinderPattern}s
* @return same {@link FinderPattern}s ordered bottom-left, top-left, top-right
*/
private static FinderPattern[] orderBestPatterns(FinderPattern[] patterns) {
// Find distances between pattern centers
@ -415,10 +484,11 @@ final class FinderPatternFinder {
FinderPattern topLeft;
FinderPattern topRight;
FinderPattern bottomLeft;
// Assume one closest to other two is top left
// Assume one closest to other two is top left;
// topRight and bottomLeft will just be guesses below at first
if (bcDistance >= abDistance && bcDistance >= acDistance) {
topLeft = patterns[0];
topRight = patterns[1]; // These two are guesses at the moment
topRight = patterns[1];
bottomLeft = patterns[2];
} else if (acDistance >= bcDistance && acDistance >= abDistance) {
topLeft = patterns[1];
@ -443,18 +513,27 @@ final class FinderPatternFinder {
return new FinderPattern[]{bottomLeft, topLeft, topRight};
}
/**
* @return distance between two points
*/
static float distance(ResultPoint pattern1, ResultPoint pattern2) {
float xDiff = pattern1.getX() - pattern2.getX();
float yDiff = pattern1.getY() - pattern2.getY();
return (float) Math.sqrt((double) (xDiff * xDiff + yDiff * yDiff));
}
/**
* <p>Orders by {@link FinderPattern#getCount()}, descending.</p>
*/
private static class CenterComparator implements Comparator {
public int compare(Object center1, Object center2) {
return ((FinderPattern) center2).getCount() - ((FinderPattern) center1).getCount();
}
}
/**
* <p>Orders by variance from average module size, ascending.</p>
*/
private static class ClosestToAverageComparator implements Comparator {
private float averageModuleSize;

View file

@ -17,6 +17,9 @@
package com.google.zxing.qrcode.detector;
/**
* <p>Encapsulates information about finder patterns in an image, including the location of
* the three finder patterns, and their estimated module size.</p>
*
* @author srowen@google.com (Sean Owen)
*/
final class FinderPatternInfo {