mirror of
https://github.com/zxing/zxing.git
synced 2025-01-13 04:07:27 -08:00
Generator polynomial for reed-Solomon algorithm can now have coefficients in any Gallois fields rather than GF(256) only
git-svn-id: https://zxing.googlecode.com/svn/trunk@1667 59b500cc-1b3d-0410-9834-0bbf25fbcc57
This commit is contained in:
parent
5ec9b84660
commit
0c3a1650d2
|
@ -1,139 +0,0 @@
|
|||
/*
|
||||
* Copyright 2007 ZXing authors
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package com.google.zxing.common.reedsolomon;
|
||||
|
||||
/**
|
||||
* <p>This class contains utility methods for performing mathematical operations over
|
||||
* the Galois Field GF(256). Operations use a given primitive polynomial in calculations.</p>
|
||||
*
|
||||
* <p>Throughout this package, elements of GF(256) are represented as an <code>int</code>
|
||||
* for convenience and speed (but at the cost of memory).
|
||||
* Only the bottom 8 bits are really used.</p>
|
||||
*
|
||||
* @author Sean Owen
|
||||
*/
|
||||
public final class GF256 {
|
||||
|
||||
public static final GF256 QR_CODE_FIELD = new GF256(0x011D); // x^8 + x^4 + x^3 + x^2 + 1
|
||||
public static final GF256 DATA_MATRIX_FIELD = new GF256(0x012D); // x^8 + x^5 + x^3 + x^2 + 1
|
||||
|
||||
private final int[] expTable;
|
||||
private final int[] logTable;
|
||||
private final GF256Poly zero;
|
||||
private final GF256Poly one;
|
||||
|
||||
/**
|
||||
* Create a representation of GF(256) using the given primitive polynomial.
|
||||
*
|
||||
* @param primitive irreducible polynomial whose coefficients are represented by
|
||||
* the bits of an int, where the least-significant bit represents the constant
|
||||
* coefficient
|
||||
*/
|
||||
private GF256(int primitive) {
|
||||
expTable = new int[256];
|
||||
logTable = new int[256];
|
||||
int x = 1;
|
||||
for (int i = 0; i < 256; i++) {
|
||||
expTable[i] = x;
|
||||
x <<= 1; // x = x * 2; we're assuming the generator alpha is 2
|
||||
if (x >= 0x100) {
|
||||
x ^= primitive;
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < 255; i++) {
|
||||
logTable[expTable[i]] = i;
|
||||
}
|
||||
// logTable[0] == 0 but this should never be used
|
||||
zero = new GF256Poly(this, new int[]{0});
|
||||
one = new GF256Poly(this, new int[]{1});
|
||||
}
|
||||
|
||||
GF256Poly getZero() {
|
||||
return zero;
|
||||
}
|
||||
|
||||
GF256Poly getOne() {
|
||||
return one;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return the monomial representing coefficient * x^degree
|
||||
*/
|
||||
GF256Poly buildMonomial(int degree, int coefficient) {
|
||||
if (degree < 0) {
|
||||
throw new IllegalArgumentException();
|
||||
}
|
||||
if (coefficient == 0) {
|
||||
return zero;
|
||||
}
|
||||
int[] coefficients = new int[degree + 1];
|
||||
coefficients[0] = coefficient;
|
||||
return new GF256Poly(this, coefficients);
|
||||
}
|
||||
|
||||
/**
|
||||
* Implements both addition and subtraction -- they are the same in GF(256).
|
||||
*
|
||||
* @return sum/difference of a and b
|
||||
*/
|
||||
static int addOrSubtract(int a, int b) {
|
||||
return a ^ b;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return 2 to the power of a in GF(256)
|
||||
*/
|
||||
int exp(int a) {
|
||||
return expTable[a];
|
||||
}
|
||||
|
||||
/**
|
||||
* @return base 2 log of a in GF(256)
|
||||
*/
|
||||
int log(int a) {
|
||||
if (a == 0) {
|
||||
throw new IllegalArgumentException();
|
||||
}
|
||||
return logTable[a];
|
||||
}
|
||||
|
||||
/**
|
||||
* @return multiplicative inverse of a
|
||||
*/
|
||||
int inverse(int a) {
|
||||
if (a == 0) {
|
||||
throw new ArithmeticException();
|
||||
}
|
||||
return expTable[255 - logTable[a]];
|
||||
}
|
||||
|
||||
/**
|
||||
* @param a
|
||||
* @param b
|
||||
* @return product of a and b in GF(256)
|
||||
*/
|
||||
int multiply(int a, int b) {
|
||||
if (a == 0 || b == 0) {
|
||||
return 0;
|
||||
}
|
||||
int logSum = logTable[a] + logTable[b];
|
||||
// index is a sped-up alternative to logSum % 255 since sum
|
||||
// is in [0,510]. Thanks to jmsachs for the idea
|
||||
return expTable[(logSum & 0xFF) + (logSum >>> 8)];
|
||||
}
|
||||
|
||||
}
|
|
@ -1,263 +0,0 @@
|
|||
/*
|
||||
* Copyright 2007 ZXing authors
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package com.google.zxing.common.reedsolomon;
|
||||
|
||||
/**
|
||||
* <p>Represents a polynomial whose coefficients are elements of GF(256).
|
||||
* Instances of this class are immutable.</p>
|
||||
*
|
||||
* <p>Much credit is due to William Rucklidge since portions of this code are an indirect
|
||||
* port of his C++ Reed-Solomon implementation.</p>
|
||||
*
|
||||
* @author Sean Owen
|
||||
*/
|
||||
final class GF256Poly {
|
||||
|
||||
private final GF256 field;
|
||||
private final int[] coefficients;
|
||||
|
||||
/**
|
||||
* @param field the {@link GF256} instance representing the field to use
|
||||
* to perform computations
|
||||
* @param coefficients coefficients as ints representing elements of GF(256), arranged
|
||||
* from most significant (highest-power term) coefficient to least significant
|
||||
* @throws IllegalArgumentException if argument is null or empty,
|
||||
* or if leading coefficient is 0 and this is not a
|
||||
* constant polynomial (that is, it is not the monomial "0")
|
||||
*/
|
||||
GF256Poly(GF256 field, int[] coefficients) {
|
||||
if (coefficients == null || coefficients.length == 0) {
|
||||
throw new IllegalArgumentException();
|
||||
}
|
||||
this.field = field;
|
||||
int coefficientsLength = coefficients.length;
|
||||
if (coefficientsLength > 1 && coefficients[0] == 0) {
|
||||
// Leading term must be non-zero for anything except the constant polynomial "0"
|
||||
int firstNonZero = 1;
|
||||
while (firstNonZero < coefficientsLength && coefficients[firstNonZero] == 0) {
|
||||
firstNonZero++;
|
||||
}
|
||||
if (firstNonZero == coefficientsLength) {
|
||||
this.coefficients = field.getZero().coefficients;
|
||||
} else {
|
||||
this.coefficients = new int[coefficientsLength - firstNonZero];
|
||||
System.arraycopy(coefficients,
|
||||
firstNonZero,
|
||||
this.coefficients,
|
||||
0,
|
||||
this.coefficients.length);
|
||||
}
|
||||
} else {
|
||||
this.coefficients = coefficients;
|
||||
}
|
||||
}
|
||||
|
||||
int[] getCoefficients() {
|
||||
return coefficients;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return degree of this polynomial
|
||||
*/
|
||||
int getDegree() {
|
||||
return coefficients.length - 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return true iff this polynomial is the monomial "0"
|
||||
*/
|
||||
boolean isZero() {
|
||||
return coefficients[0] == 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return coefficient of x^degree term in this polynomial
|
||||
*/
|
||||
int getCoefficient(int degree) {
|
||||
return coefficients[coefficients.length - 1 - degree];
|
||||
}
|
||||
|
||||
/**
|
||||
* @return evaluation of this polynomial at a given point
|
||||
*/
|
||||
int evaluateAt(int a) {
|
||||
if (a == 0) {
|
||||
// Just return the x^0 coefficient
|
||||
return getCoefficient(0);
|
||||
}
|
||||
int size = coefficients.length;
|
||||
if (a == 1) {
|
||||
// Just the sum of the coefficients
|
||||
int result = 0;
|
||||
for (int i = 0; i < size; i++) {
|
||||
result = GF256.addOrSubtract(result, coefficients[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
int result = coefficients[0];
|
||||
for (int i = 1; i < size; i++) {
|
||||
result = GF256.addOrSubtract(field.multiply(a, result), coefficients[i]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
GF256Poly addOrSubtract(GF256Poly other) {
|
||||
if (!field.equals(other.field)) {
|
||||
throw new IllegalArgumentException("GF256Polys do not have same GF256 field");
|
||||
}
|
||||
if (isZero()) {
|
||||
return other;
|
||||
}
|
||||
if (other.isZero()) {
|
||||
return this;
|
||||
}
|
||||
|
||||
int[] smallerCoefficients = this.coefficients;
|
||||
int[] largerCoefficients = other.coefficients;
|
||||
if (smallerCoefficients.length > largerCoefficients.length) {
|
||||
int[] temp = smallerCoefficients;
|
||||
smallerCoefficients = largerCoefficients;
|
||||
largerCoefficients = temp;
|
||||
}
|
||||
int[] sumDiff = new int[largerCoefficients.length];
|
||||
int lengthDiff = largerCoefficients.length - smallerCoefficients.length;
|
||||
// Copy high-order terms only found in higher-degree polynomial's coefficients
|
||||
System.arraycopy(largerCoefficients, 0, sumDiff, 0, lengthDiff);
|
||||
|
||||
for (int i = lengthDiff; i < largerCoefficients.length; i++) {
|
||||
sumDiff[i] = GF256.addOrSubtract(smallerCoefficients[i - lengthDiff], largerCoefficients[i]);
|
||||
}
|
||||
|
||||
return new GF256Poly(field, sumDiff);
|
||||
}
|
||||
|
||||
GF256Poly multiply(GF256Poly other) {
|
||||
if (!field.equals(other.field)) {
|
||||
throw new IllegalArgumentException("GF256Polys do not have same GF256 field");
|
||||
}
|
||||
if (isZero() || other.isZero()) {
|
||||
return field.getZero();
|
||||
}
|
||||
int[] aCoefficients = this.coefficients;
|
||||
int aLength = aCoefficients.length;
|
||||
int[] bCoefficients = other.coefficients;
|
||||
int bLength = bCoefficients.length;
|
||||
int[] product = new int[aLength + bLength - 1];
|
||||
for (int i = 0; i < aLength; i++) {
|
||||
int aCoeff = aCoefficients[i];
|
||||
for (int j = 0; j < bLength; j++) {
|
||||
product[i + j] = GF256.addOrSubtract(product[i + j],
|
||||
field.multiply(aCoeff, bCoefficients[j]));
|
||||
}
|
||||
}
|
||||
return new GF256Poly(field, product);
|
||||
}
|
||||
|
||||
GF256Poly multiply(int scalar) {
|
||||
if (scalar == 0) {
|
||||
return field.getZero();
|
||||
}
|
||||
if (scalar == 1) {
|
||||
return this;
|
||||
}
|
||||
int size = coefficients.length;
|
||||
int[] product = new int[size];
|
||||
for (int i = 0; i < size; i++) {
|
||||
product[i] = field.multiply(coefficients[i], scalar);
|
||||
}
|
||||
return new GF256Poly(field, product);
|
||||
}
|
||||
|
||||
GF256Poly multiplyByMonomial(int degree, int coefficient) {
|
||||
if (degree < 0) {
|
||||
throw new IllegalArgumentException();
|
||||
}
|
||||
if (coefficient == 0) {
|
||||
return field.getZero();
|
||||
}
|
||||
int size = coefficients.length;
|
||||
int[] product = new int[size + degree];
|
||||
for (int i = 0; i < size; i++) {
|
||||
product[i] = field.multiply(coefficients[i], coefficient);
|
||||
}
|
||||
return new GF256Poly(field, product);
|
||||
}
|
||||
|
||||
GF256Poly[] divide(GF256Poly other) {
|
||||
if (!field.equals(other.field)) {
|
||||
throw new IllegalArgumentException("GF256Polys do not have same GF256 field");
|
||||
}
|
||||
if (other.isZero()) {
|
||||
throw new IllegalArgumentException("Divide by 0");
|
||||
}
|
||||
|
||||
GF256Poly quotient = field.getZero();
|
||||
GF256Poly remainder = this;
|
||||
|
||||
int denominatorLeadingTerm = other.getCoefficient(other.getDegree());
|
||||
int inverseDenominatorLeadingTerm = field.inverse(denominatorLeadingTerm);
|
||||
|
||||
while (remainder.getDegree() >= other.getDegree() && !remainder.isZero()) {
|
||||
int degreeDifference = remainder.getDegree() - other.getDegree();
|
||||
int scale = field.multiply(remainder.getCoefficient(remainder.getDegree()), inverseDenominatorLeadingTerm);
|
||||
GF256Poly term = other.multiplyByMonomial(degreeDifference, scale);
|
||||
GF256Poly iterationQuotient = field.buildMonomial(degreeDifference, scale);
|
||||
quotient = quotient.addOrSubtract(iterationQuotient);
|
||||
remainder = remainder.addOrSubtract(term);
|
||||
}
|
||||
|
||||
return new GF256Poly[] { quotient, remainder };
|
||||
}
|
||||
|
||||
public String toString() {
|
||||
StringBuffer result = new StringBuffer(8 * getDegree());
|
||||
for (int degree = getDegree(); degree >= 0; degree--) {
|
||||
int coefficient = getCoefficient(degree);
|
||||
if (coefficient != 0) {
|
||||
if (coefficient < 0) {
|
||||
result.append(" - ");
|
||||
coefficient = -coefficient;
|
||||
} else {
|
||||
if (result.length() > 0) {
|
||||
result.append(" + ");
|
||||
}
|
||||
}
|
||||
if (degree == 0 || coefficient != 1) {
|
||||
int alphaPower = field.log(coefficient);
|
||||
if (alphaPower == 0) {
|
||||
result.append('1');
|
||||
} else if (alphaPower == 1) {
|
||||
result.append('a');
|
||||
} else {
|
||||
result.append("a^");
|
||||
result.append(alphaPower);
|
||||
}
|
||||
}
|
||||
if (degree != 0) {
|
||||
if (degree == 1) {
|
||||
result.append('x');
|
||||
} else {
|
||||
result.append("x^");
|
||||
result.append(degree);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return result.toString();
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in a new issue