Generator polynomial for reed-Solomon algorithm can now have coefficients in any Gallois fields rather than GF(256) only

git-svn-id: https://zxing.googlecode.com/svn/trunk@1667 59b500cc-1b3d-0410-9834-0bbf25fbcc57
This commit is contained in:
dav.olivier@gmail.com 2010-11-20 21:18:54 +00:00
parent 5ec9b84660
commit 0c3a1650d2
2 changed files with 0 additions and 402 deletions

View file

@ -1,139 +0,0 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.common.reedsolomon;
/**
* <p>This class contains utility methods for performing mathematical operations over
* the Galois Field GF(256). Operations use a given primitive polynomial in calculations.</p>
*
* <p>Throughout this package, elements of GF(256) are represented as an <code>int</code>
* for convenience and speed (but at the cost of memory).
* Only the bottom 8 bits are really used.</p>
*
* @author Sean Owen
*/
public final class GF256 {
public static final GF256 QR_CODE_FIELD = new GF256(0x011D); // x^8 + x^4 + x^3 + x^2 + 1
public static final GF256 DATA_MATRIX_FIELD = new GF256(0x012D); // x^8 + x^5 + x^3 + x^2 + 1
private final int[] expTable;
private final int[] logTable;
private final GF256Poly zero;
private final GF256Poly one;
/**
* Create a representation of GF(256) using the given primitive polynomial.
*
* @param primitive irreducible polynomial whose coefficients are represented by
* the bits of an int, where the least-significant bit represents the constant
* coefficient
*/
private GF256(int primitive) {
expTable = new int[256];
logTable = new int[256];
int x = 1;
for (int i = 0; i < 256; i++) {
expTable[i] = x;
x <<= 1; // x = x * 2; we're assuming the generator alpha is 2
if (x >= 0x100) {
x ^= primitive;
}
}
for (int i = 0; i < 255; i++) {
logTable[expTable[i]] = i;
}
// logTable[0] == 0 but this should never be used
zero = new GF256Poly(this, new int[]{0});
one = new GF256Poly(this, new int[]{1});
}
GF256Poly getZero() {
return zero;
}
GF256Poly getOne() {
return one;
}
/**
* @return the monomial representing coefficient * x^degree
*/
GF256Poly buildMonomial(int degree, int coefficient) {
if (degree < 0) {
throw new IllegalArgumentException();
}
if (coefficient == 0) {
return zero;
}
int[] coefficients = new int[degree + 1];
coefficients[0] = coefficient;
return new GF256Poly(this, coefficients);
}
/**
* Implements both addition and subtraction -- they are the same in GF(256).
*
* @return sum/difference of a and b
*/
static int addOrSubtract(int a, int b) {
return a ^ b;
}
/**
* @return 2 to the power of a in GF(256)
*/
int exp(int a) {
return expTable[a];
}
/**
* @return base 2 log of a in GF(256)
*/
int log(int a) {
if (a == 0) {
throw new IllegalArgumentException();
}
return logTable[a];
}
/**
* @return multiplicative inverse of a
*/
int inverse(int a) {
if (a == 0) {
throw new ArithmeticException();
}
return expTable[255 - logTable[a]];
}
/**
* @param a
* @param b
* @return product of a and b in GF(256)
*/
int multiply(int a, int b) {
if (a == 0 || b == 0) {
return 0;
}
int logSum = logTable[a] + logTable[b];
// index is a sped-up alternative to logSum % 255 since sum
// is in [0,510]. Thanks to jmsachs for the idea
return expTable[(logSum & 0xFF) + (logSum >>> 8)];
}
}

View file

@ -1,263 +0,0 @@
/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.common.reedsolomon;
/**
* <p>Represents a polynomial whose coefficients are elements of GF(256).
* Instances of this class are immutable.</p>
*
* <p>Much credit is due to William Rucklidge since portions of this code are an indirect
* port of his C++ Reed-Solomon implementation.</p>
*
* @author Sean Owen
*/
final class GF256Poly {
private final GF256 field;
private final int[] coefficients;
/**
* @param field the {@link GF256} instance representing the field to use
* to perform computations
* @param coefficients coefficients as ints representing elements of GF(256), arranged
* from most significant (highest-power term) coefficient to least significant
* @throws IllegalArgumentException if argument is null or empty,
* or if leading coefficient is 0 and this is not a
* constant polynomial (that is, it is not the monomial "0")
*/
GF256Poly(GF256 field, int[] coefficients) {
if (coefficients == null || coefficients.length == 0) {
throw new IllegalArgumentException();
}
this.field = field;
int coefficientsLength = coefficients.length;
if (coefficientsLength > 1 && coefficients[0] == 0) {
// Leading term must be non-zero for anything except the constant polynomial "0"
int firstNonZero = 1;
while (firstNonZero < coefficientsLength && coefficients[firstNonZero] == 0) {
firstNonZero++;
}
if (firstNonZero == coefficientsLength) {
this.coefficients = field.getZero().coefficients;
} else {
this.coefficients = new int[coefficientsLength - firstNonZero];
System.arraycopy(coefficients,
firstNonZero,
this.coefficients,
0,
this.coefficients.length);
}
} else {
this.coefficients = coefficients;
}
}
int[] getCoefficients() {
return coefficients;
}
/**
* @return degree of this polynomial
*/
int getDegree() {
return coefficients.length - 1;
}
/**
* @return true iff this polynomial is the monomial "0"
*/
boolean isZero() {
return coefficients[0] == 0;
}
/**
* @return coefficient of x^degree term in this polynomial
*/
int getCoefficient(int degree) {
return coefficients[coefficients.length - 1 - degree];
}
/**
* @return evaluation of this polynomial at a given point
*/
int evaluateAt(int a) {
if (a == 0) {
// Just return the x^0 coefficient
return getCoefficient(0);
}
int size = coefficients.length;
if (a == 1) {
// Just the sum of the coefficients
int result = 0;
for (int i = 0; i < size; i++) {
result = GF256.addOrSubtract(result, coefficients[i]);
}
return result;
}
int result = coefficients[0];
for (int i = 1; i < size; i++) {
result = GF256.addOrSubtract(field.multiply(a, result), coefficients[i]);
}
return result;
}
GF256Poly addOrSubtract(GF256Poly other) {
if (!field.equals(other.field)) {
throw new IllegalArgumentException("GF256Polys do not have same GF256 field");
}
if (isZero()) {
return other;
}
if (other.isZero()) {
return this;
}
int[] smallerCoefficients = this.coefficients;
int[] largerCoefficients = other.coefficients;
if (smallerCoefficients.length > largerCoefficients.length) {
int[] temp = smallerCoefficients;
smallerCoefficients = largerCoefficients;
largerCoefficients = temp;
}
int[] sumDiff = new int[largerCoefficients.length];
int lengthDiff = largerCoefficients.length - smallerCoefficients.length;
// Copy high-order terms only found in higher-degree polynomial's coefficients
System.arraycopy(largerCoefficients, 0, sumDiff, 0, lengthDiff);
for (int i = lengthDiff; i < largerCoefficients.length; i++) {
sumDiff[i] = GF256.addOrSubtract(smallerCoefficients[i - lengthDiff], largerCoefficients[i]);
}
return new GF256Poly(field, sumDiff);
}
GF256Poly multiply(GF256Poly other) {
if (!field.equals(other.field)) {
throw new IllegalArgumentException("GF256Polys do not have same GF256 field");
}
if (isZero() || other.isZero()) {
return field.getZero();
}
int[] aCoefficients = this.coefficients;
int aLength = aCoefficients.length;
int[] bCoefficients = other.coefficients;
int bLength = bCoefficients.length;
int[] product = new int[aLength + bLength - 1];
for (int i = 0; i < aLength; i++) {
int aCoeff = aCoefficients[i];
for (int j = 0; j < bLength; j++) {
product[i + j] = GF256.addOrSubtract(product[i + j],
field.multiply(aCoeff, bCoefficients[j]));
}
}
return new GF256Poly(field, product);
}
GF256Poly multiply(int scalar) {
if (scalar == 0) {
return field.getZero();
}
if (scalar == 1) {
return this;
}
int size = coefficients.length;
int[] product = new int[size];
for (int i = 0; i < size; i++) {
product[i] = field.multiply(coefficients[i], scalar);
}
return new GF256Poly(field, product);
}
GF256Poly multiplyByMonomial(int degree, int coefficient) {
if (degree < 0) {
throw new IllegalArgumentException();
}
if (coefficient == 0) {
return field.getZero();
}
int size = coefficients.length;
int[] product = new int[size + degree];
for (int i = 0; i < size; i++) {
product[i] = field.multiply(coefficients[i], coefficient);
}
return new GF256Poly(field, product);
}
GF256Poly[] divide(GF256Poly other) {
if (!field.equals(other.field)) {
throw new IllegalArgumentException("GF256Polys do not have same GF256 field");
}
if (other.isZero()) {
throw new IllegalArgumentException("Divide by 0");
}
GF256Poly quotient = field.getZero();
GF256Poly remainder = this;
int denominatorLeadingTerm = other.getCoefficient(other.getDegree());
int inverseDenominatorLeadingTerm = field.inverse(denominatorLeadingTerm);
while (remainder.getDegree() >= other.getDegree() && !remainder.isZero()) {
int degreeDifference = remainder.getDegree() - other.getDegree();
int scale = field.multiply(remainder.getCoefficient(remainder.getDegree()), inverseDenominatorLeadingTerm);
GF256Poly term = other.multiplyByMonomial(degreeDifference, scale);
GF256Poly iterationQuotient = field.buildMonomial(degreeDifference, scale);
quotient = quotient.addOrSubtract(iterationQuotient);
remainder = remainder.addOrSubtract(term);
}
return new GF256Poly[] { quotient, remainder };
}
public String toString() {
StringBuffer result = new StringBuffer(8 * getDegree());
for (int degree = getDegree(); degree >= 0; degree--) {
int coefficient = getCoefficient(degree);
if (coefficient != 0) {
if (coefficient < 0) {
result.append(" - ");
coefficient = -coefficient;
} else {
if (result.length() > 0) {
result.append(" + ");
}
}
if (degree == 0 || coefficient != 1) {
int alphaPower = field.log(coefficient);
if (alphaPower == 0) {
result.append('1');
} else if (alphaPower == 1) {
result.append('a');
} else {
result.append("a^");
result.append(alphaPower);
}
}
if (degree != 0) {
if (degree == 1) {
result.append('x');
} else {
result.append("x^");
result.append(degree);
}
}
}
}
return result.toString();
}
}