Back-port more proper PDF417 R-S error correction

git-svn-id: https://zxing.googlecode.com/svn/trunk@2275 59b500cc-1b3d-0410-9834-0bbf25fbcc57
This commit is contained in:
srowen 2012-04-27 20:22:11 +00:00
parent 3926c96fc1
commit 4ee80c2150

View file

@ -19,7 +19,10 @@ package com.google.zxing.pdf417.decoder.ec;
import com.google.zxing.ChecksumException;
/**
* <p>Incomplete implementation of PDF417 error correction. For now, only detects errors.</p>
* <p>PDF417 error correction implementation.</p>
*
* <p>This <a href="http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Example">example</a>
* is quite useful in understanding the algorithm.</p>
*
* @author Sean Owen
* @see com.google.zxing.common.reedsolomon.ReedSolomonDecoder
@ -34,19 +37,127 @@ public final class ErrorCorrection {
public void decode(int[] received, int numECCodewords) throws ChecksumException {
ModulusPoly poly = new ModulusPoly(field, received);
int[] syndromeCoefficients = new int[numECCodewords];
boolean noError = true;
for (int i = 0; i < numECCodewords; i++) {
int eval = poly.evaluateAt(field.exp(i + 1));
syndromeCoefficients[syndromeCoefficients.length - 1 - i] = eval;
int[] S = new int[numECCodewords];
boolean error = false;
for (int i = numECCodewords; i > 0; i--) {
int eval = poly.evaluateAt(field.exp(i));
S[numECCodewords - i] = eval;
if (eval != 0) {
noError = false;
error = true;
}
}
if (!noError) {
throw ChecksumException.getChecksumInstance();
if (error) {
ModulusPoly syndrome = new ModulusPoly(field, S);
ErrorCorrection ec = new ErrorCorrection();
ModulusPoly[] sigmaOmega =
ec.runEuclideanAlgorithm(field.buildMonomial(numECCodewords, 1), syndrome, numECCodewords);
ModulusPoly sigma = sigmaOmega[0];
ModulusPoly omega = sigmaOmega[1];
int[] errorLocations = ec.findErrorLocations(sigma);
int[] errorMagnitudes = ec.findErrorMagnitudes(omega, sigma, errorLocations);
for (int i = 0; i < errorLocations.length; i++) {
int position = received.length - 1 - field.log(errorLocations[i]);
if (position < 0) {
throw ChecksumException.getChecksumInstance();
}
received[position] = field.subtract(received[position], errorMagnitudes[i]);
}
}
// TODO actually correct errors!
}
private ModulusPoly[] runEuclideanAlgorithm(ModulusPoly a, ModulusPoly b, int R)
throws ChecksumException {
// Assume a's degree is >= b's
if (a.getDegree() < b.getDegree()) {
ModulusPoly temp = a;
a = b;
b = temp;
}
ModulusPoly rLast = a;
ModulusPoly r = b;
ModulusPoly sLast = field.getOne();
ModulusPoly s = field.getZero();
ModulusPoly tLast = field.getZero();
ModulusPoly t = field.getOne();
// Run Euclidean algorithm until r's degree is less than R/2
while (r.getDegree() >= R / 2) {
ModulusPoly rLastLast = rLast;
ModulusPoly sLastLast = sLast;
ModulusPoly tLastLast = tLast;
rLast = r;
sLast = s;
tLast = t;
// Divide rLastLast by rLast, with quotient in q and remainder in r
if (rLast.isZero()) {
// Oops, Euclidean algorithm already terminated?
throw ChecksumException.getChecksumInstance();
}
r = rLastLast;
ModulusPoly q = field.getZero();
int denominatorLeadingTerm = rLast.getCoefficient(rLast.getDegree());
int dltInverse = field.inverse(denominatorLeadingTerm);
while (r.getDegree() >= rLast.getDegree() && !r.isZero()) {
int degreeDiff = r.getDegree() - rLast.getDegree();
int scale = field.multiply(r.getCoefficient(r.getDegree()), dltInverse);
q = q.add(field.buildMonomial(degreeDiff, scale));
r = r.subtract(rLast.multiplyByMonomial(degreeDiff, scale));
}
s = q.multiply(sLast).subtract(sLastLast).negative();
t = q.multiply(tLast).subtract(tLastLast).negative();
}
int sigmaTildeAtZero = t.getCoefficient(0);
if (sigmaTildeAtZero == 0) {
throw ChecksumException.getChecksumInstance();
}
int inverse = field.inverse(sigmaTildeAtZero);
ModulusPoly sigma = t.multiply(inverse);
ModulusPoly omega = r.multiply(inverse);
return new ModulusPoly[]{sigma, omega};
}
private int[] findErrorLocations(ModulusPoly errorLocator) throws ChecksumException {
// This is a direct application of Chien's search
int numErrors = errorLocator.getDegree();
int[] result = new int[numErrors];
int e = 0;
for (int i = 1; i < field.getSize() && e < numErrors; i++) {
if (errorLocator.evaluateAt(i) == 0) {
result[e] = field.inverse(i);
e++;
}
}
if (e != numErrors) {
throw ChecksumException.getChecksumInstance();
}
return result;
}
private int[] findErrorMagnitudes(ModulusPoly errorEvaluator,
ModulusPoly errorLocator,
int[] errorLocations) {
int errorLocatorDegree = errorLocator.getDegree();
int[] formalDerivativeCoefficients = new int[errorLocatorDegree];
for (int i = 1; i <= errorLocatorDegree; i++) {
formalDerivativeCoefficients[errorLocatorDegree - i] =
field.multiply(i, errorLocator.getCoefficient(i));
}
ModulusPoly formalDerivative = new ModulusPoly(field, formalDerivativeCoefficients);
// This is directly applying Forney's Formula
int s = errorLocations.length;
int[] result = new int[s];
for (int i = 0; i < s; i++) {
int xiInverse = field.inverse(errorLocations[i]);
int numerator = field.subtract(0, errorEvaluator.evaluateAt(xiInverse));
int denominator = field.inverse(formalDerivative.evaluateAt(xiInverse));
result[i] = field.multiply(numerator, denominator);
}
return result;
}
}