mirror of
https://github.com/zxing/zxing.git
synced 2025-01-13 04:07:27 -08:00
Back-port more proper PDF417 R-S error correction
git-svn-id: https://zxing.googlecode.com/svn/trunk@2275 59b500cc-1b3d-0410-9834-0bbf25fbcc57
This commit is contained in:
parent
3926c96fc1
commit
4ee80c2150
|
@ -19,7 +19,10 @@ package com.google.zxing.pdf417.decoder.ec;
|
|||
import com.google.zxing.ChecksumException;
|
||||
|
||||
/**
|
||||
* <p>Incomplete implementation of PDF417 error correction. For now, only detects errors.</p>
|
||||
* <p>PDF417 error correction implementation.</p>
|
||||
*
|
||||
* <p>This <a href="http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Example">example</a>
|
||||
* is quite useful in understanding the algorithm.</p>
|
||||
*
|
||||
* @author Sean Owen
|
||||
* @see com.google.zxing.common.reedsolomon.ReedSolomonDecoder
|
||||
|
@ -34,19 +37,127 @@ public final class ErrorCorrection {
|
|||
|
||||
public void decode(int[] received, int numECCodewords) throws ChecksumException {
|
||||
ModulusPoly poly = new ModulusPoly(field, received);
|
||||
int[] syndromeCoefficients = new int[numECCodewords];
|
||||
boolean noError = true;
|
||||
for (int i = 0; i < numECCodewords; i++) {
|
||||
int eval = poly.evaluateAt(field.exp(i + 1));
|
||||
syndromeCoefficients[syndromeCoefficients.length - 1 - i] = eval;
|
||||
int[] S = new int[numECCodewords];
|
||||
boolean error = false;
|
||||
for (int i = numECCodewords; i > 0; i--) {
|
||||
int eval = poly.evaluateAt(field.exp(i));
|
||||
S[numECCodewords - i] = eval;
|
||||
if (eval != 0) {
|
||||
noError = false;
|
||||
error = true;
|
||||
}
|
||||
}
|
||||
if (!noError) {
|
||||
throw ChecksumException.getChecksumInstance();
|
||||
if (error) {
|
||||
ModulusPoly syndrome = new ModulusPoly(field, S);
|
||||
ErrorCorrection ec = new ErrorCorrection();
|
||||
ModulusPoly[] sigmaOmega =
|
||||
ec.runEuclideanAlgorithm(field.buildMonomial(numECCodewords, 1), syndrome, numECCodewords);
|
||||
ModulusPoly sigma = sigmaOmega[0];
|
||||
ModulusPoly omega = sigmaOmega[1];
|
||||
int[] errorLocations = ec.findErrorLocations(sigma);
|
||||
int[] errorMagnitudes = ec.findErrorMagnitudes(omega, sigma, errorLocations);
|
||||
for (int i = 0; i < errorLocations.length; i++) {
|
||||
int position = received.length - 1 - field.log(errorLocations[i]);
|
||||
if (position < 0) {
|
||||
throw ChecksumException.getChecksumInstance();
|
||||
}
|
||||
received[position] = field.subtract(received[position], errorMagnitudes[i]);
|
||||
}
|
||||
}
|
||||
// TODO actually correct errors!
|
||||
}
|
||||
|
||||
private ModulusPoly[] runEuclideanAlgorithm(ModulusPoly a, ModulusPoly b, int R)
|
||||
throws ChecksumException {
|
||||
// Assume a's degree is >= b's
|
||||
if (a.getDegree() < b.getDegree()) {
|
||||
ModulusPoly temp = a;
|
||||
a = b;
|
||||
b = temp;
|
||||
}
|
||||
|
||||
ModulusPoly rLast = a;
|
||||
ModulusPoly r = b;
|
||||
ModulusPoly sLast = field.getOne();
|
||||
ModulusPoly s = field.getZero();
|
||||
ModulusPoly tLast = field.getZero();
|
||||
ModulusPoly t = field.getOne();
|
||||
|
||||
// Run Euclidean algorithm until r's degree is less than R/2
|
||||
while (r.getDegree() >= R / 2) {
|
||||
ModulusPoly rLastLast = rLast;
|
||||
ModulusPoly sLastLast = sLast;
|
||||
ModulusPoly tLastLast = tLast;
|
||||
rLast = r;
|
||||
sLast = s;
|
||||
tLast = t;
|
||||
|
||||
// Divide rLastLast by rLast, with quotient in q and remainder in r
|
||||
if (rLast.isZero()) {
|
||||
// Oops, Euclidean algorithm already terminated?
|
||||
throw ChecksumException.getChecksumInstance();
|
||||
}
|
||||
r = rLastLast;
|
||||
ModulusPoly q = field.getZero();
|
||||
int denominatorLeadingTerm = rLast.getCoefficient(rLast.getDegree());
|
||||
int dltInverse = field.inverse(denominatorLeadingTerm);
|
||||
while (r.getDegree() >= rLast.getDegree() && !r.isZero()) {
|
||||
int degreeDiff = r.getDegree() - rLast.getDegree();
|
||||
int scale = field.multiply(r.getCoefficient(r.getDegree()), dltInverse);
|
||||
q = q.add(field.buildMonomial(degreeDiff, scale));
|
||||
r = r.subtract(rLast.multiplyByMonomial(degreeDiff, scale));
|
||||
}
|
||||
|
||||
s = q.multiply(sLast).subtract(sLastLast).negative();
|
||||
t = q.multiply(tLast).subtract(tLastLast).negative();
|
||||
}
|
||||
|
||||
int sigmaTildeAtZero = t.getCoefficient(0);
|
||||
if (sigmaTildeAtZero == 0) {
|
||||
throw ChecksumException.getChecksumInstance();
|
||||
}
|
||||
|
||||
int inverse = field.inverse(sigmaTildeAtZero);
|
||||
ModulusPoly sigma = t.multiply(inverse);
|
||||
ModulusPoly omega = r.multiply(inverse);
|
||||
return new ModulusPoly[]{sigma, omega};
|
||||
}
|
||||
|
||||
private int[] findErrorLocations(ModulusPoly errorLocator) throws ChecksumException {
|
||||
// This is a direct application of Chien's search
|
||||
int numErrors = errorLocator.getDegree();
|
||||
int[] result = new int[numErrors];
|
||||
int e = 0;
|
||||
for (int i = 1; i < field.getSize() && e < numErrors; i++) {
|
||||
if (errorLocator.evaluateAt(i) == 0) {
|
||||
result[e] = field.inverse(i);
|
||||
e++;
|
||||
}
|
||||
}
|
||||
if (e != numErrors) {
|
||||
throw ChecksumException.getChecksumInstance();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
private int[] findErrorMagnitudes(ModulusPoly errorEvaluator,
|
||||
ModulusPoly errorLocator,
|
||||
int[] errorLocations) {
|
||||
int errorLocatorDegree = errorLocator.getDegree();
|
||||
int[] formalDerivativeCoefficients = new int[errorLocatorDegree];
|
||||
for (int i = 1; i <= errorLocatorDegree; i++) {
|
||||
formalDerivativeCoefficients[errorLocatorDegree - i] =
|
||||
field.multiply(i, errorLocator.getCoefficient(i));
|
||||
}
|
||||
ModulusPoly formalDerivative = new ModulusPoly(field, formalDerivativeCoefficients);
|
||||
|
||||
// This is directly applying Forney's Formula
|
||||
int s = errorLocations.length;
|
||||
int[] result = new int[s];
|
||||
for (int i = 0; i < s; i++) {
|
||||
int xiInverse = field.inverse(errorLocations[i]);
|
||||
int numerator = field.subtract(0, errorEvaluator.evaluateAt(xiInverse));
|
||||
int denominator = field.inverse(formalDerivative.evaluateAt(xiInverse));
|
||||
result[i] = field.multiply(numerator, denominator);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue