Added experimental version of QR-Code compaction (#1445)

* Added experimental version of QR-Code compaction which can be activated via EncodeHintType.QR_COMPACT
This commit is contained in:
AlexGeller1 2021-10-09 17:50:46 +02:00 committed by GitHub
parent af7831b5c7
commit 7a760c6384
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 1273 additions and 57 deletions

View file

@ -110,6 +110,14 @@ public enum EncodeHintType {
*/
QR_MASK_PATTERN,
/**
* Specifies whether to use compact mode for QR code (type {@link Boolean}, or "true" or "false"
* When compaction is performed the value for {@link CHARACTER_SET} is ignored.
* {@link String} value).
*/
QR_COMPACT,
/**
* Specifies whether the data should be encoded to the GS1 standard (type {@link Boolean}, or "true" or "false"
* {@link String } value).

View file

@ -78,63 +78,90 @@ public final class Encoder {
ErrorCorrectionLevel ecLevel,
Map<EncodeHintType,?> hints) throws WriterException {
// Determine what character encoding has been specified by the caller, if any
Charset encoding = DEFAULT_BYTE_MODE_ENCODING;
boolean hasEncodingHint = hints != null && hints.containsKey(EncodeHintType.CHARACTER_SET);
if (hasEncodingHint) {
encoding = Charset.forName(hints.get(EncodeHintType.CHARACTER_SET).toString());
}
// Pick an encoding mode appropriate for the content. Note that this will not attempt to use
// multiple modes / segments even if that were more efficient. Twould be nice.
Mode mode = chooseMode(content, encoding);
// This will store the header information, like mode and
// length, as well as "header" segments like an ECI segment.
BitArray headerBits = new BitArray();
// Append ECI segment if applicable
if (mode == Mode.BYTE && hasEncodingHint) {
CharacterSetECI eci = CharacterSetECI.getCharacterSetECI(encoding);
if (eci != null) {
appendECI(eci, headerBits);
}
}
// Append the FNC1 mode header for GS1 formatted data if applicable
boolean hasGS1FormatHint = hints != null && hints.containsKey(EncodeHintType.GS1_FORMAT);
if (hasGS1FormatHint && Boolean.parseBoolean(hints.get(EncodeHintType.GS1_FORMAT).toString())) {
// GS1 formatted codes are prefixed with a FNC1 in first position mode header
appendModeInfo(Mode.FNC1_FIRST_POSITION, headerBits);
}
// (With ECI in place,) Write the mode marker
appendModeInfo(mode, headerBits);
// Collect data within the main segment, separately, to count its size if needed. Don't add it to
// main payload yet.
BitArray dataBits = new BitArray();
appendBytes(content, mode, dataBits, encoding);
Version version;
if (hints != null && hints.containsKey(EncodeHintType.QR_VERSION)) {
int versionNumber = Integer.parseInt(hints.get(EncodeHintType.QR_VERSION).toString());
version = Version.getVersionForNumber(versionNumber);
int bitsNeeded = calculateBitsNeeded(mode, headerBits, dataBits, version);
if (!willFit(bitsNeeded, version, ecLevel)) {
throw new WriterException("Data too big for requested version");
}
} else {
version = recommendVersion(ecLevel, mode, headerBits, dataBits);
}
BitArray headerAndDataBits;
Mode mode;
BitArray headerAndDataBits = new BitArray();
headerAndDataBits.appendBitArray(headerBits);
// Find "length" of main segment and write it
int numLetters = mode == Mode.BYTE ? dataBits.getSizeInBytes() : content.length();
appendLengthInfo(numLetters, version, mode, headerAndDataBits);
// Put data together into the overall payload
headerAndDataBits.appendBitArray(dataBits);
boolean hasGS1FormatHint = hints != null && hints.containsKey(EncodeHintType.GS1_FORMAT) &&
Boolean.parseBoolean(hints.get(EncodeHintType.GS1_FORMAT).toString());
boolean hasCompactionHint = hints != null && hints.containsKey(EncodeHintType.QR_COMPACT) &&
Boolean.parseBoolean(hints.get(EncodeHintType.QR_COMPACT).toString());
if (hasCompactionHint) {
mode = Mode.BYTE;
MinimalEncoder.ResultList rn = MinimalEncoder.encode(content, null, hasGS1FormatHint);
while (!willFit(rn.getSize(), rn.getVersion(ecLevel), ecLevel)) {
if (rn.getVersion(ecLevel).getVersionNumber() <= 26) {
int nextVersionNumber = rn.getVersion(ecLevel).getVersionNumber() <= 9 ? 10 : 27 ;
rn = MinimalEncoder.encode(content, Version.getVersionForNumber(nextVersionNumber), hasGS1FormatHint);
} else {
throw new WriterException("Data too big for any version");
}
}
headerAndDataBits = new BitArray();
rn.getBits(headerAndDataBits);
version = rn.getVersion(ecLevel);
} else {
// Determine what character encoding has been specified by the caller, if any
Charset encoding = DEFAULT_BYTE_MODE_ENCODING;
boolean hasEncodingHint = hints != null && hints.containsKey(EncodeHintType.CHARACTER_SET);
if (hasEncodingHint) {
encoding = Charset.forName(hints.get(EncodeHintType.CHARACTER_SET).toString());
}
// Pick an encoding mode appropriate for the content. Note that this will not attempt to use
// multiple modes / segments even if that were more efficient. Twould be nice.
mode = chooseMode(content, encoding);
// This will store the header information, like mode and
// length, as well as "header" segments like an ECI segment.
BitArray headerBits = new BitArray();
// Append ECI segment if applicable
if (mode == Mode.BYTE && hasEncodingHint) {
CharacterSetECI eci = CharacterSetECI.getCharacterSetECI(encoding);
if (eci != null) {
appendECI(eci, headerBits);
}
}
// Append the FNC1 mode header for GS1 formatted data if applicable
if (hasGS1FormatHint) {
// GS1 formatted codes are prefixed with a FNC1 in first position mode header
appendModeInfo(Mode.FNC1_FIRST_POSITION, headerBits);
}
// (With ECI in place,) Write the mode marker
appendModeInfo(mode, headerBits);
// Collect data within the main segment, separately, to count its size if needed. Don't add it to
// main payload yet.
BitArray dataBits = new BitArray();
appendBytes(content, mode, dataBits, encoding);
if (hints != null && hints.containsKey(EncodeHintType.QR_VERSION)) {
int versionNumber = Integer.parseInt(hints.get(EncodeHintType.QR_VERSION).toString());
version = Version.getVersionForNumber(versionNumber);
int bitsNeeded = calculateBitsNeeded(mode, headerBits, dataBits, version);
if (!willFit(bitsNeeded, version, ecLevel)) {
throw new WriterException("Data too big for requested version");
}
} else {
version = recommendVersion(ecLevel, mode, headerBits, dataBits);
}
headerAndDataBits = new BitArray();
headerAndDataBits.appendBitArray(headerBits);
// Find "length" of main segment and write it
int numLetters = mode == Mode.BYTE ? dataBits.getSizeInBytes() : content.length();
appendLengthInfo(numLetters, version, mode, headerAndDataBits);
// Put data together into the overall payload
headerAndDataBits.appendBitArray(dataBits);
}
Version.ECBlocks ecBlocks = version.getECBlocksForLevel(ecLevel);
int numDataBytes = version.getTotalCodewords() - ecBlocks.getTotalECCodewords();
@ -249,7 +276,7 @@ public final class Encoder {
return Mode.BYTE;
}
private static boolean isOnlyDoubleByteKanji(String content) {
static boolean isOnlyDoubleByteKanji(String content) {
byte[] bytes = content.getBytes(StringUtils.SHIFT_JIS_CHARSET);
int length = bytes.length;
if (length % 2 != 0) {
@ -297,7 +324,7 @@ public final class Encoder {
* @return true if the number of input bits will fit in a code with the specified version and
* error correction level.
*/
private static boolean willFit(int numInputBits, Version version, ErrorCorrectionLevel ecLevel) {
static boolean willFit(int numInputBits, Version version, ErrorCorrectionLevel ecLevel) {
// In the following comments, we use numbers of Version 7-H.
// numBytes = 196
int numBytes = version.getTotalCodewords();

View file

@ -0,0 +1,991 @@
/*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.qrcode.encoder;
import com.google.zxing.qrcode.decoder.Mode;
import com.google.zxing.qrcode.decoder.Version;
import com.google.zxing.common.BitArray;
import com.google.zxing.common.CharacterSetECI;
import com.google.zxing.WriterException;
import com.google.zxing.qrcode.decoder.ErrorCorrectionLevel;
import java.nio.charset.Charset;
import java.nio.charset.CharsetEncoder;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Iterator;
import java.nio.charset.UnsupportedCharsetException;
/**
* Encoder that encodes minimally
*
* Version selection:
* The version can be preset in the constructor. If it isn't specified then the algorithm will compute three solutions
* for the three different version classes 1-9, 10-26 and 27-40.
*
* It is not clear to me if ever a solution using for example Medium (Versions 10-26) could be smaller than a Small
* solution (Versions 1-9) (proof for or against would be nice to have).
* With hypothetical values for the number of length bits, the number of bits per mode and the number of bits per
* encoded character it can be shown that it can happen at all as follows:
* We hypothetically assume that a mode is encoded using 1 bit (instead of 4) and a character is encoded in BYTE mode
* using 2 bit (instead of 8). Using these values we now attempt to encode the four characters "1234".
* If we furthermore assume that in Version 1-9 the length field has 1 bit length so that it can encode up to 2
* characters and that in Version 10-26 it has 2 bits length so that we can encode up to 2 characters then it is more
* efficient to encode with Version 10-26 than with Version 1-9 as shown below:
*
* Number of length bits small version (1-9): 1
* Number of length bits large version (10-26): 2
* Number of bits per mode item: 1
* Number of bits per character item: 2
* BYTE(1,2),BYTE(3,4): 1+1+2+2,1+1+2+2=12 bits
* BYTE(1,2,3,4): 1+2+2+2+2+2 =11 bits
*
* If we however change the capacity of the large encoding from 2 bit to 4 bit so that it potentially can encode 16
* items, then it is more efficient to encode using the small encoding
* as shown below:
*
* Number of length bits small version (1-9): 1
* Number of length bits large version (10-26): 4
* Number of bits per mode item: 1
* Number of bits per character item: 2
* BYTE(1,2),BYTE(3,4): 1+1+2+2,1+1+2+2=12 bits
* BYTE(1,2,3,4): 1+4+2+2+2+2 =13 bits
*
* But as mentioned, it is not clear to me if this can ever happen with the actual values.
*
* ECI switching:
*
* In multi language content the algorithm selects the most compact representation using ECI modes. For example the
* it is more compactly represented using one ECI to UTF-8 rather than two ECIs to ISO-8859-6 and ISO-8859-1 if the
* text contains more ASCII characters (since they are represented as one byte sequence) as opposed to the case where
* there are proportionally more Arabic characters that require two bytes in UTF-8 and only one in ISO-8859-6.
*
* @author Alex Geller
*/
final class MinimalEncoder {
// static final boolean DEBUG = false;
private enum VersionSize {
SMALL("version 1-9"),
MEDIUM("version 10-26"),
LARGE("version 27-40");
private final String description;
VersionSize(String description) {
this.description = description;
}
public String toString() {
return description;
}
}
private final String stringToEncode;
private final Version version;
private final boolean isGS1;
private final CharsetEncoder[] encoders;
/**
* Encoding is optional (default ISO-8859-1) and version is optional (minimal version is computed if not specified.
*/
MinimalEncoder(String stringToEncode, Version version, boolean isGS1) throws WriterException {
this.stringToEncode = stringToEncode;
this.version = version;
this.isGS1 = isGS1;
CharsetEncoder[] isoEncoders = new CharsetEncoder[15]; //room for the 15 ISO-8859 charsets 1 through 16.
isoEncoders[0] = StandardCharsets.ISO_8859_1.newEncoder();
boolean needUnicodeEncoder = false;
for (int i = 0; i < stringToEncode.length(); i++) {
int cnt = 0;
int j;
for (j = 0; j < 15; j++) {
if (isoEncoders[j] != null) {
cnt++;
if (isoEncoders[j].canEncode(stringToEncode.charAt(i))) {
break;
}
}
}
if (cnt == 14) { //we need all. Can stop looking further.
break;
}
if (j >= 15) { //no encoder found
for (j = 0; j < 15; j++) {
if (j != 11 && isoEncoders[j] == null) { // ISO-8859-12 doesn't exist
try {
CharsetEncoder ce = Charset.forName("ISO-8859-" + (j + 1)).newEncoder();
if (ce.canEncode(stringToEncode.charAt(i))) {
isoEncoders[j] = ce;
break;
}
} catch (UnsupportedCharsetException e) { }
}
}
if (j >= 15) {
if (!StandardCharsets.UTF_16BE.newEncoder().canEncode(stringToEncode.charAt(i))) {
throw new WriterException("Can not encode character \\u" + String.format("%04X",
(int) stringToEncode.charAt(i)) + " at position " + i + " in input \"" + stringToEncode + "\"");
}
needUnicodeEncoder = true;
}
}
}
int numberOfEncoders = 0;
for (int j = 0; j < 15; j++) {
if (isoEncoders[j] != null && CharacterSetECI.getCharacterSetECI(isoEncoders[j].charset()) != null) {
numberOfEncoders++;
}
}
if (numberOfEncoders == 1 && !needUnicodeEncoder) {
encoders = new CharsetEncoder[1];
encoders[0] = isoEncoders[0];
} else {
encoders = new CharsetEncoder[numberOfEncoders + 2];
int index = 0;
for (int j = 0; j < 15; j++) {
if (isoEncoders[j] != null && CharacterSetECI.getCharacterSetECI(isoEncoders[j].charset()) != null) {
encoders[index++] = isoEncoders[j];
}
}
encoders[index++] = StandardCharsets.UTF_8.newEncoder();
encoders[index++] = StandardCharsets.UTF_16BE.newEncoder();
}
}
static ResultList encode(String stringToEncode, Version version, boolean isGS1) throws WriterException {
return new MinimalEncoder(stringToEncode, version, isGS1).encode();
}
ResultList encode() throws WriterException {
if (version == null) { //compute minimal encoding trying the three version sizes.
ResultList[] results = {encode(getVersion(VersionSize.SMALL)),
encode(getVersion(VersionSize.MEDIUM)),
encode(getVersion(VersionSize.LARGE))};
return postProcess(smallest(results));
} else { //compute minimal encoding for a given version
return postProcess(encode(version));
}
}
static VersionSize getVersionSize(Version version) {
return version.getVersionNumber() <= 9 ? VersionSize.SMALL : version.getVersionNumber() <= 26 ?
VersionSize.MEDIUM : VersionSize.LARGE;
}
static Version getVersion(VersionSize versionSize) {
switch (versionSize) {
case SMALL:
return Version.getVersionForNumber(9);
case MEDIUM:
return Version.getVersionForNumber(26);
case LARGE:
default:
return Version.getVersionForNumber(40);
}
}
static boolean isNumeric(char c) {
return c >= '0' && c <= '9';
}
static boolean isDoubleByteKanji(char c) {
return Encoder.isOnlyDoubleByteKanji(String.valueOf(c));
}
static boolean isAlphanumeric(char c) {
return Encoder.getAlphanumericCode(c) != -1;
}
/**
* Example: to encode alphanumerically at least 2 characters are needed (5.5 bits per character). Similarily three
* digits are needed to encode numerically (3+1/3 bits per digit)
*/
static int getEncodingGranularity(Mode mode) {
switch (mode) {
case KANJI:
case BYTE:
return 1;
case ALPHANUMERIC:
return 2;
case NUMERIC:
return 3;
default:
return 0;
}
}
/**
* Example: to encode alphanumerically 11 bits are used per 2 characters. Similarily 10 bits are used to encode 3
* numeric digits.
*/
static int getBitsPerEncodingUnit(Mode mode) {
switch (mode) {
case KANJI: return 16;
case ALPHANUMERIC: return 11;
case NUMERIC: return 10;
case BYTE: return 8;
case ECI:
default:
return 0;
}
}
/**
* Returns the maximum number of encodeable characters in the given mode for the given version. Example: in
* Version 1, 2^10 digits or 2^8 bytes can be encoded. In Version 3 it is 2^14 digits and 2^16 bytes
*/
static int getMaximumNumberOfEncodeableCharacters(Version version, Mode mode) {
int count = mode.getCharacterCountBits(version);
return count == 0 ? 0 : 1 << count;
}
static int getMaximumNumberOfEncodeableCharacters(VersionSize versionSize, Mode mode) {
return getMaximumNumberOfEncodeableCharacters(getVersion(versionSize), mode);
}
boolean canEncode(Mode mode, char c) {
switch (mode) {
case KANJI: return isDoubleByteKanji(c);
case ALPHANUMERIC: return isAlphanumeric(c);
case NUMERIC: return isNumeric(c);
case BYTE: return true; //any character can be encoded as byte(s). Up to the caller to manage splitting into
//multiple bytes when String.getBytes(Charset) return more than one byte.
default:
return false;
}
}
static int getCompactedOrdinal(Mode mode) {
if (mode == null) {
return 0;
}
switch (mode) {
case KANJI:
return 0;
case ALPHANUMERIC:
return 1;
case NUMERIC:
return 2;
case ECI:
case BYTE:
return 3;
default:
throw new IllegalStateException("Illegal mode " + mode);
}
}
static ResultList smallest(ResultList[] results) {
ResultList smallestResult = null;
for (int i = 0; i < results.length; i++) {
if (smallestResult == null || (results[i] != null && results[i].getSize() < smallestResult.getSize())) {
smallestResult = results[i];
}
}
return smallestResult;
}
ResultList postProcess(ResultList result) {
if (isGS1) {
ResultList.ResultNode first = result.getFirst();
if (first != null) {
if (first.mode != Mode.ECI) {
boolean haveECI = false;
for (Iterator<ResultList.ResultNode> it = result.iterator(); it.hasNext();) {
if (it.next().mode == Mode.ECI) {
haveECI = true;
break;
}
}
if (haveECI) {
//prepend a default character set ECI
result.addFirst(result.new ResultNode(Mode.ECI, 0, 0));
}
}
}
first = result.getFirst();
if (first.mode != Mode.ECI) {
//prepend a FNC1_FIRST_POSITION
result.addFirst(result.new ResultNode(Mode.FNC1_FIRST_POSITION, 0, 0));
} else {
//insert a FNC1_FIRST_POSITION after the ECI
result.add(1,result.new ResultNode(Mode.FNC1_FIRST_POSITION, 0, 0));
}
}
//Add TERMINATOR according to "8.4.8 Terminator"
//TODO: The terminiator can be omitted if there are less than 4 bit in the capacity of the symbol.
result.add(result.new ResultNode(Mode.TERMINATOR, stringToEncode.length(), 0));
return result;
}
int getEdgeCharsetEncoderIndex(ResultList edge) {
ResultList.ResultNode last = edge.getLast();
assert last != null;
return last != null ? last.charsetEncoderIndex : 0;
}
Mode getEdgeMode(ResultList edge) {
ResultList.ResultNode last = edge.getLast();
assert last != null;
return last != null ? last.mode : Mode.BYTE;
}
int getEdgePosition(ResultList edge) {
//The algorithm appends an edge at some point (in the method addEdge() with a minimal solution.
//This function works regardless if the concatenation has already taken place or not.
ResultList.ResultNode last = edge.getLast();
assert last != null;
return last != null ? last.position : 0;
}
int getEdgeLength(ResultList edge) {
//The algorithm appends an edge at some point (in the method addEdge() with a minimal solution.
//This function works regardless if the concatenation has already taken place or not.
ResultList.ResultNode last = edge.getLast();
assert last != null;
return last != null ? last.getCharacterLength() : 0;
}
ResultList.ResultNode getEdgePrevious(ResultList edge) {
Iterator<ResultList.ResultNode> it = edge.descendingIterator();
assert it.hasNext();
if (!it.hasNext()) {
return null;
}
it.next();
if (!it.hasNext()) {
return null;
}
ResultList.ResultNode result = it.next();
if (result.mode == Mode.ECI) {
if (!it.hasNext()) {
return null;
}
result = it.next();
}
return result;
}
void addEdge(ArrayList<ResultList>[][][] vertices, ResultList edge, ResultList previous) {
int vertexIndex = getEdgePosition(edge) + getEdgeLength(edge);
if (vertices[vertexIndex][getEdgeCharsetEncoderIndex(edge)][getCompactedOrdinal(getEdgeMode(edge))] == null) {
vertices[vertexIndex][getEdgeCharsetEncoderIndex(edge)][getCompactedOrdinal(getEdgeMode(edge))] = new
ArrayList<ResultList>();
}
vertices[vertexIndex][getEdgeCharsetEncoderIndex(edge)][getCompactedOrdinal(getEdgeMode(edge))].add(edge);
// if (DEBUG) {
// if (previous == null) {
// System.err.println("DEBUG adding edge " + edge + " from " + edge.getPosition() + " to " + vertexIndex +
// " with an accumulated size of " + edge.getSize());
// } else {
// System.err.println("DEBUG adding edge " + edge + " from " + vertexToString(previous.getPosition(), previous)
// + " to " + vertexToString(vertexIndex, edge) + " with an accumulated size of " + edge.getSize());
// }
// }
if (previous != null) {
edge.addFirst(previous);
}
}
void addEdges(Version version, ArrayList<ResultList>[][][] vertices, int from, ResultList previous) {
for (int i = 0; i < encoders.length; i++) {
if (encoders[i].canEncode(stringToEncode.charAt(from))) {
ResultList edge = new ResultList(version, Mode.BYTE, from, i);
boolean needECI = (previous == null && i > 0) ||
(previous != null && getEdgeCharsetEncoderIndex(previous) != i);
if (needECI) {
ResultList.ResultNode eci = edge.new ResultNode(Mode.ECI, from, i);
edge.addFirst(eci);
}
addEdge(vertices, edge, previous);
}
}
if (canEncode(Mode.KANJI, stringToEncode.charAt(from))) {
addEdge(vertices, new ResultList(version, Mode.KANJI, from, 0), previous);
}
int inputLength = stringToEncode.length();
if (from + 1 < inputLength && canEncode(Mode.ALPHANUMERIC, stringToEncode.charAt(from)) &&
canEncode(Mode.ALPHANUMERIC, stringToEncode.charAt(from + 1))) {
addEdge(vertices, new ResultList(version, Mode.ALPHANUMERIC, from, 0), previous);
}
if (from + 2 < inputLength && canEncode(Mode.NUMERIC, stringToEncode.charAt(from)) && canEncode(Mode.NUMERIC,
stringToEncode.charAt(from + 1)) && canEncode(Mode.NUMERIC, stringToEncode.charAt(from + 2))) {
addEdge(vertices, new ResultList(version, Mode.NUMERIC, from, 0), previous);
}
}
// String vertexToString(int position, ResultList rl) {
// return (position >= stringToEncode.length() ? "end vertex" : "vertex for character '" +
// stringToEncode.charAt(position) + "' at position " + position) + " with encoding " +
// encoders[getEdgeCharsetEncoderIndex(rl)].charset().name() + " and mode " + getEdgeMode(rl);
// }
// void printEdges(ArrayList<ResultList>[][][] vertices) {
//
// final boolean showCompacted = true;
//
// boolean willHaveECI = encoders.length > 1;
// ArrayList<String> edgeStrings = new ArrayList<String>();
// int inputLength = stringToEncode.length();
// for (int i = 1; i <= inputLength; i++) {
// for (int j = 0; j < encoders.length; j++) {
// for (int k = 0; k < 4; k++) {
// if (vertices[i][j][k] != null) {
// ArrayList<ResultList> edges = vertices[i][j][k];
// assert edges.size() > 0;
// if (edges.size() > 0) {
// ResultList edge = edges.get(0);
// String vertexKey = "" + i + "_" + getEdgeMode(edge) + (willHaveECI ? "_" +
// encoders[getEdgeCharsetEncoderIndex(edge)].charset().name() : "");
// int fromPosition = getEdgePosition(edge);
// ResultList.ResultNode previous = getEdgePrevious(edge);
// String fromKey = previous == null ? "initial" : "" + fromPosition + "_" + previous.mode +
// (willHaveECI ? "_" + encoders[previous.charsetEncoderIndex].charset().name() : "");
// int toPosition = fromPosition + getEncodingGranularity(getEdgeMode(edge));
// edgeStrings.add("(" + fromKey + ") -- " + getEdgeMode(edge) + (toPosition -
// fromPosition > 0 ? "(" + stringToEncode.substring(fromPosition, toPosition) +
// ")" : "") + " (" + edge.getSize() + ")" + " --> " + "(" + vertexKey + ")");
// }
// }
// }
// }
// }
//
// if (showCompacted) {
// boolean modifiedSomething;
// do {
// modifiedSomething = false;
// for (Iterator<String> it = edgeStrings.iterator(); it.hasNext();) {
// String edge = it.next();
// if (edge.startsWith("(initial)")) {
// int pos = edge.lastIndexOf("--> (");
// String toKey = edge.substring(pos + 4);
// int cnt = 0;
// for (Iterator<String> it1 = edgeStrings.iterator(); it1.hasNext();) {
// String edge1 = it1.next();
// String fromKey = edge1.substring(0, edge1.indexOf(')') + 1);
// if (fromKey.equals(toKey)) {
// cnt++;
// }
// }
// for (Iterator<String> it1 = edgeStrings.iterator(); it1.hasNext();) {
// String edge1 = it1.next();
// String fromKey = edge1.substring(0, edge1.indexOf(')') + 1);
// if (fromKey.equals(toKey)) {
// modifiedSomething = true;
// if (cnt == 1) {
// edgeStrings.remove(edgeStrings.indexOf(edge));
// }
// edgeStrings.remove(edgeStrings.indexOf(edge1));
// edgeStrings.add(edge.substring(0, pos + 4) + edge1);
// break;
// }
// }
// if (modifiedSomething) {
// break;
// }
// }
// }
// } while (modifiedSomething);
// }
//
// for (Iterator<String> it = edgeStrings.iterator(); it.hasNext();) {
// System.err.println("DEBUG " + it.next());
// }
// }
ResultList encode(Version version) throws WriterException {
/* A vertex represents a tuple of a position in the input, a mode and an a character encoding where position 0
* denotes the position left of the first character, 1 the position left of the second character and so on.
* Likewise the end vertices are located after the last character at position stringToEncode.length().
*
* An edge leading to such a vertex encodes one or more of the characters left of the position that the vertex
* represents and encodes it in the same encoding and mode as the vertex on which the edge ends. In other words,
* all edges leading to a particular vertex encode the same characters in the same mode with the same character
* encoding. They differ only by their source vertices who are all located at i+1 minus the number of encoded
* characters.
*
* The edges leading to a vertex are stored in such a way that there is a fast way to enumerate the edges ending on a
* particular vertex.
*
* The algorithm processes the vertices in order of their position therby performing the following:
*
* For every vertex at position i the algorithm enumerates the edges ending on the vertex and removes all but the
* shortest from that list.
* Then it processes the vertices for the position i+1. If i+1 == stringToEncode.length() then the algorithm ends
* and chooses the the edge with the smallest size from any of the edges leading to vertices at this position.
* Otherwise the algorithm computes all possible outgoing edges for the vertices at the position i+1
*
* Examples:
* The process is illustrated by showing the graph (edges) after each iteration from left to right over the input:
* An edge is drawn as follows "(" + fromVertex + ") -- " + encodingMode + "(" + encodedInput + ") (" +
* accumulatedSize + ") --> (" + toVertex + ")"
*
* The coding conversions of this project require lines to not exceed 120 characters. In order to view the examples
* below join lines that end with a backslash. This can be achieved by running the command
* sed -e ':a' -e 'N' -e '$!ba' -e 's/\\\n *[*]/ /g' on this file.
*
* Example 1 encoding the string "ABCDE":
*
* Initial situation
* (initial) -- BYTE(A) (20) --> (1_BYTE)
* (initial) -- ALPHANUMERIC(AB) (24) --> (2_ALPHANUMERIC)
*
* Situation after adding edges to vertices at position 1
* (initial) -- BYTE(A) (20) --> (1_BYTE) -- BYTE(B) (28) --> (2_BYTE)
* (1_BYTE) -- ALPHANUMERIC(BC) (44) --> (3_ALPHANUMERIC)
* (initial) -- ALPHANUMERIC(AB) (24) --> (2_ALPHANUMERIC)
*
* Situation after adding edges to vertices at position 2
* (initial) -- BYTE(A) (20) --> (1_BYTE)
* (initial) -- ALPHANUMERIC(AB) (24) --> (2_ALPHANUMERIC)
* (initial) -- BYTE(A) (20) --> (1_BYTE) -- BYTE(B) (28) --> (2_BYTE)
* (1_BYTE) -- ALPHANUMERIC(BC) (44) --> (3_ALPHANUMERIC)
* (initial) -- ALPHANUMERIC(AB) (24) --> (2_ALPHANUMERIC) -- BYTE(C) (44) --> (3_BYTE)
* (2_ALPHANUMERIC) -- ALPHANUMERIC(CD) \
* (35) --> (4_ALPHANUMERIC)
*
* Situation after adding edges to vertices at position 3
* (initial) -- BYTE(A) (20) --> (1_BYTE) -- BYTE(B) (28) --> (2_BYTE) -- BYTE(C) (36) --> (3_BYTE)
* (1_BYTE) -- ALPHANUMERIC(BC) (44) --> (3_ALPHANUMERIC) -- \
*BYTE(D) (64) --> (4_BYTE)
* (3_ALPHANUMERIC) -- \
*ALPHANUMERIC(DE) (55) --> (5_ALPHANUMERIC)
* (initial) -- ALPHANUMERIC(AB) (24) --> (2_ALPHANUMERIC) -- ALPHANUMERIC(CD) \
* (35) --> (4_ALPHANUMERIC)
* (2_ALPHANUMERIC) -- ALPHANUMERIC(CD) \
* (35) --> (4_ALPHANUMERIC)
*
* Situation after adding edges to vertices at position 4
* (initial) -- BYTE(A) (20) --> (1_BYTE) -- BYTE(B) (28) --> (2_BYTE) -- BYTE(C) (36) --> (3_BYTE) -- BYTE(D) \
*(44) --> (4_BYTE)
* (1_BYTE) -- ALPHANUMERIC(BC) (44) --> (3_ALPHANUMERIC) -- \
*ALPHANUMERIC(DE) (55) --> (5_ALPHANUMERIC)
* (initial) -- ALPHANUMERIC(AB) (24) --> (2_ALPHANUMERIC) -- ALPHANUMERIC(CD) \
* (35) --> (4_ALPHANUMERIC) -- BYTE(E) (55) --> (5_BYTE)
*
* Situation after adding edges to vertices at position 5
* (initial) -- BYTE(A) (20) --> (1_BYTE) -- BYTE(B) (28) --> (2_BYTE) -- BYTE(C) (36) --> (3_BYTE) -- BYTE(D) \
* (44) --> (4_BYTE) -- BYTE(E) (52) --> (5_BYTE)
* (1_BYTE) -- ALPHANUMERIC(BC) (44) --> (3_ALPHANUMERIC) -- \
*ALPHANUMERIC(DE) (55) --> (5_ALPHANUMERIC)
* (initial) -- ALPHANUMERIC(AB) (24) --> (2_ALPHANUMERIC) -- ALPHANUMERIC(CD) \
* (35) --> (4_ALPHANUMERIC)
*
* Encoding as BYTE(ABCDE) has the smallest size of 52 and is hence chosen. The encodation ALPHANUMERIC(ABCD), BYTE(E)
* is longer with a size of 55.
*
* Example 2 encoding the string "XXYY" where X denotes a character unique to character set ISO-8859-2 and Y a
* character unique to ISO-8859-3. Both characters encode as double byte in UTF-8:
*
* Initial situation
* (initial) -- BYTE(X) (32) --> (1_BYTE_ISO-8859-2)
* (initial) -- BYTE(X) (40) --> (1_BYTE_UTF-8)
* (initial) -- BYTE(X) (40) --> (1_BYTE_UTF-16BE)
*
* Situation after adding edges to vertices at position 1
* (initial) -- BYTE(X) (32) --> (1_BYTE_ISO-8859-2) -- BYTE(X) (40) --> (2_BYTE_ISO-8859-2)
* (1_BYTE_ISO-8859-2) -- BYTE(X) (72) --> (2_BYTE_UTF-8)
* (1_BYTE_ISO-8859-2) -- BYTE(X) (72) --> (2_BYTE_UTF-16BE)
* (initial) -- BYTE(X) (40) --> (1_BYTE_UTF-8)
* (initial) -- BYTE(X) (40) --> (1_BYTE_UTF-16BE)
*
* Situation after adding edges to vertices at position 2
* (initial) -- BYTE(X) (32) --> (1_BYTE_ISO-8859-2) -- BYTE(X) (40) --> (2_BYTE_ISO-8859-2)
* (2_BYTE_ISO-8859-2) -- BYTE(Y) (72) --> (3_BYT\
*E_ISO-8859-3)
* (2_BYTE_ISO-8859-2) -- BYTE(Y) (80) --> (3_BYT\
*E_UTF-8)
* (2_BYTE_ISO-8859-2) -- BYTE(Y) (80) --> (3_BYT\
*E_UTF-16BE)
* (initial) -- BYTE(X) (40) --> (1_BYTE_UTF-8) -- BYTE(X) (56) --> (2_BYTE_UTF-8)
* (initial) -- BYTE(X) (40) --> (1_BYTE_UTF-16BE) -- BYTE(X) (56) --> (2_BYTE_UTF-16BE)
*
* Situation after adding edges to vertices at position 3
* (initial) -- BYTE(X) (32) --> (1_BYTE_ISO-8859-2) -- BYTE(X) (40) --> (2_BYTE_ISO-8859-2) -- BYTE(Y) (72) --> (3_BYT\
*E_ISO-8859-3)
* (3_BYT\
*E_ISO-8859-3) -- BYTE(Y) (80) --> (4_BYTE_ISO-8859-3)
* (3_BYT\
*E_ISO-8859-3) -- BYTE(Y) (112) --> (4_BYTE_UTF-8)
* (3_BYT\
*E_ISO-8859-3) -- BYTE(Y) (112) --> (4_BYTE_UTF-16BE)
* (initial) -- BYTE(X) (40) --> (1_BYTE_UTF-8) -- BYTE(X) (56) --> (2_BYTE_UTF-8) -- BYTE(Y) (72) --> (3_BYTE_UTF-8)
* (initial) -- BYTE(X) (40) --> (1_BYTE_UTF-16BE) -- BYTE(X) (56) --> (2_BYTE_UTF-16BE) -- BYTE(Y) (72) --> (3_BYTE_UT\
*F-16BE)
*
* Situation after adding edges to vertices at position 4
* (initial) -- BYTE(X) (32) --> (1_BYTE_ISO-8859-2) -- BYTE(X) (40) --> (2_BYTE_ISO-8859-2) -- BYTE(Y) (72) --> (3_BYT\
*E_ISO-8859-3) -- BYTE(Y) (80) --> (4_BYTE_ISO-8859-3)
* (3_BYT\
*E_UTF-8) -- BYTE(Y) (88) --> (4_BYTE_UTF-8)
* (3_BYT\
*E_UTF-16BE) -- BYTE(Y) (88) --> (4_BYTE_UTF-16BE)
* (initial) -- BYTE(X) (40) --> (1_BYTE_UTF-8) -- BYTE(X) (56) --> (2_BYTE_UTF-8) -- BYTE(Y) (72) --> (3_BYTE_UTF-8)
* (initial) -- BYTE(X) (40) --> (1_BYTE_UTF-16BE) -- BYTE(X) (56) --> (2_BYTE_UTF-16BE) -- BYTE(Y) (72) --> (3_BYTE_UT\
*F-16BE)
*
* Encoding as ECI(ISO-8859-2),BYTE(XX),ECI(ISO-8859-3),BYTE(YY) has the smallest size of 80 and is hence chosen. The
* encodation ECI(UTF-8),BYTE(XXYY) is longer with a size of 88.
*/
int inputLength = stringToEncode.length();
//Array that represents vertices. There is a vertex for every character, encoding and mode. The vertex contains a list
//of all edges that lead to it that have the same encoding and mode.
//The lists are created lazily
//The last dimension in the array below encodes the 4 modes KANJI, ALPHANUMERIC, NUMERIC and BYTE via the
//function getCompactedOrdinal(Mode)
ArrayList<ResultList>[][][] vertices = new ArrayList[inputLength + 1][encoders.length][4];
addEdges(version, vertices, 0, null);
// if (DEBUG) {
// System.err.println("DEBUG computing solution for " + getVersionSize(version));
// System.err.println("DEBUG Initial situation");
// printEdges(vertices);
// }
for (int i = 1; i <= inputLength; i++) {
for (int j = 0; j < encoders.length; j++) {
for (int k = 0; k < 4; k++) {
ResultList minimalEdge = null;
if (vertices[i][j][k] != null) {
ArrayList<ResultList> edges = vertices[i][j][k];
if (edges.size() == 1) { //Optimization: if there is only one edge then that's the minimal one
minimalEdge = edges.get(0);
} else {
int minimalIndex = -1;
int minimalSize = Integer.MAX_VALUE;
for (int l = 0; l < edges.size(); l++) {
ResultList edge = edges.get(l);
if (edge.getSize() < minimalSize) {
minimalIndex = l;
minimalSize = edge.getSize();
}
}
assert minimalIndex != -1;
minimalEdge = edges.get(minimalIndex);
edges.clear();
edges.add(minimalEdge);
}
if (i < inputLength) {
assert minimalEdge != null;
// if (DEBUG && minimalEdge != null) {
// System.err.println("DEBUG processing " + vertexToString(i, minimalEdge) +
// ". The minimal edge leading to this vertex is " + minimalEdge + " with a size of "
// + minimalEdge.getSize());
// }
addEdges(version, vertices, i, minimalEdge);
}
}
}
}
// if (DEBUG) {
// System.err.println("DEBUG situation after adding edges to vertices at position " + i);
// printEdges(vertices);
// }
}
int minimalJ = -1;
int minimalK = -1;
int minimalSize = Integer.MAX_VALUE;
for (int j = 0; j < encoders.length; j++) {
for (int k = 0; k < 4; k++) {
if (vertices[inputLength][j][k] != null) {
ArrayList<ResultList> edges = vertices[inputLength][j][k];
assert edges.size() == 1;
ResultList edge = edges.get(0);
if (edge.getSize() < minimalSize) {
minimalSize = edge.getSize();
minimalJ = j;
minimalK = k;
}
}
}
}
assert minimalJ != -1;
if (minimalJ >= 0) {
// if (DEBUG) {
// System.err.println("DEBUG the minimal solution for version " + version + " is " + vertices[inputLength]
// [minimalJ][minimalK].get(0));
// }
return vertices[inputLength][minimalJ][minimalK].get(0);
} else {
throw new WriterException("Internal error: failed to encode");
}
}
byte[] getBytesOfCharacter(int position, int charsetEncoderIndex) {
//TODO: Is there a more efficient way for a single character?
return stringToEncode.substring(position, position + 1).getBytes(encoders[charsetEncoderIndex].charset());
}
final class ResultList extends LinkedList<ResultList.ResultNode> {
private final Version version;
private ResultList(Version version) {
this.version = version;
}
/**
* Short for rl=new ResultList(version); rl.add(rl.new ResultNode(modes, position, charsetEncoderIndex));
*/
private ResultList(Version version, Mode mode, int position, int charsetEncoderIndex) {
this(version);
add(new ResultNode(mode, position, charsetEncoderIndex));
}
private void addFirst(ResultList resultList) {
for (Iterator<ResultNode> it = resultList.descendingIterator(); it.hasNext();) {
addFirst(it.next());
}
}
/**
* Prepends n and may modify this.getFirst().declaresMode before doing so.
*/
@Override
public void addFirst(ResultNode n) {
ResultNode next = getFirst();
if (next != null) {
next.declaresMode = true;
if (n.mode == next.mode && next.mode != Mode.ECI && n.getCharacterLength() + next.getCharacterLength() <
getMaximumNumberOfEncodeableCharacters(version, next.mode)) {
next.declaresMode = false;
}
}
super.addFirst(n);
}
/**
* returns the size in bits
*/
int getSize() {
int result = 0;
for (Iterator<ResultNode> it = iterator(); it.hasNext();) {
result += it.next().getSize();
}
return result;
}
/**
* returns the start position
*/
private int getPosition() {
return getFirst() != null ? getFirst().position : 0;
}
/**
* returns the length in characters
*/
int getCharacterLength() {
int result = 0;
for (Iterator<ResultNode> it = iterator(); it.hasNext();) {
result += it.next().getCharacterLength();
}
return result;
}
/**
* returns the length in characters according to the specification (differs from getCharacterLength() in BYTE mode
* for multi byte encoded characters)
*/
int getCharacterCountIndicator() {
int result = 0;
for (Iterator<ResultNode> it = iterator(); it.hasNext();) {
result += it.next().getCharacterCountIndicator();
}
return result;
}
/**
* appends the bits
*/
void getBits(BitArray bits) throws WriterException {
for (Iterator<ResultNode> it = iterator(); it.hasNext();) {
it.next().getBits(bits);
}
}
Version getVersion(ErrorCorrectionLevel ecLevel) {
int versionNumber = version.getVersionNumber();
int lowerLimit;
int upperLimit;
switch (getVersionSize(version)) {
case SMALL:
lowerLimit = 1;
upperLimit = 9;
break;
case MEDIUM:
lowerLimit = 10;
upperLimit = 26;
break;
case LARGE:
default:
lowerLimit = 27;
upperLimit = 40;
break;
}
//increase version if needed
while (versionNumber < upperLimit && !Encoder.willFit(getSize(), Version.getVersionForNumber(versionNumber),
ecLevel)) {
versionNumber++;
}
//shrink version if possible
while (versionNumber > lowerLimit && Encoder.willFit(getSize(), Version.getVersionForNumber(versionNumber - 1),
ecLevel)) {
versionNumber--;
}
return Version.getVersionForNumber(versionNumber);
}
public String toString() {
StringBuilder result = new StringBuilder();
ResultNode previous = null;
for (Iterator<ResultNode> it = iterator(); it.hasNext();) {
ResultNode current = it.next();
if (previous != null) {
if (current.declaresMode) {
result.append(")");
}
result.append(",");
}
result.append(current.toString());
previous = current;
}
if (previous != null) {
result.append(")");
}
return result.toString();
}
final class ResultNode {
private final Mode mode;
private boolean declaresMode = true;
private final int position;
private final int charsetEncoderIndex;
ResultNode(Mode mode, int position, int charsetEncoderIndex) {
assert mode != null;
this.mode = mode;
this.position = position;
this.charsetEncoderIndex = charsetEncoderIndex;
}
/**
* returns the size in bits
*/
private int getSize() {
int size = declaresMode ? 4 + mode.getCharacterCountBits(version) : 0;
if (mode == Mode.ECI) {
size += 8; // the ECI assignment numbers for ISO-8859-x, UTF-8 and UTF-16 are all 8 bit long
} else if (mode == Mode.BYTE) {
size += 8 * getBytesOfCharacter(position, charsetEncoderIndex).length;
} else {
size += getBitsPerEncodingUnit(mode);
}
return size;
}
/**
* returns the length in characters
*/
private int getCharacterLength() {
return (getBitsPerEncodingUnit(mode) == 0 ? 0 : 1) * getEncodingGranularity(mode);
}
/**
* returns the length in characters according to the specification (differs from getCharacterLength() in BYTE mode
* for multi byte encoded characters)
*/
private int getCharacterCountIndicator() {
return mode == Mode.BYTE ? getBytesOfCharacter(position, charsetEncoderIndex).length : getCharacterLength();
}
/**
* appends the bits
*/
private void getBits(BitArray bits) throws WriterException {
if (declaresMode) {
// append mode
bits.appendBits(mode.getBits(), 4);
if (mode == Mode.ECI) {
bits.appendBits(CharacterSetECI.getCharacterSetECI(encoders[charsetEncoderIndex].charset()).getValue(), 8);
} else {
int characterLength = getCharacterCountIndicator();
if (characterLength > 0) {
// append length
bits.appendBits(characterLength, mode.getCharacterCountBits(version));
}
}
}
if (getCharacterLength() > 0) {
// append data
Encoder.appendBytes(stringToEncode.substring(position, position + getCharacterLength()), mode, bits,
encoders[charsetEncoderIndex].charset());
}
}
public String toString() {
StringBuilder result = new StringBuilder();
if (declaresMode) {
result.append(mode + "(");
}
if (mode == Mode.ECI) {
result.append(encoders[charsetEncoderIndex].charset().displayName());
} else {
result.append(makePrintable(stringToEncode.substring(position, position + getEncodingGranularity(mode))));
}
return result.toString();
}
private String makePrintable(String s) {
String result = "";
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) < 32 || s.charAt(i) > 126) {
result += ".";
} else {
result += s.charAt(i);
}
}
return result;
}
}
}
}

View file

@ -38,6 +38,9 @@ public final class QRCode {
maskPattern = -1;
}
/**
* @return the mode. Not relevant if {@link com.google.zxing.EncodeHintType.java#QR_COMPACT} is selected.
*/
public Mode getMode() {
return mode;
}

View file

@ -667,6 +667,193 @@ public final class EncoderTestCase extends Assert {
Encoder.encode(builder.toString(), ErrorCorrectionLevel.L);
}
@Test
public void testMinimalEncoder1() throws WriterException {
assertEquals(MinimalEncoder.encode("A", null, false).toString(), "BYTE(A),TERMINATOR()");
}
@Test
public void testMinimalEncoder2() throws WriterException {
assertEquals(MinimalEncoder.encode("AB", null, false).toString(), "ALPHANUMERIC(AB),TERMINATOR()");
}
@Test
public void testMinimalEncoder3() throws WriterException {
assertEquals(MinimalEncoder.encode("ABC", null, false).toString(), "BYTE(A,B,C),TERMINATOR()");
}
@Test
public void testMinimalEncoder4() throws WriterException {
assertEquals(MinimalEncoder.encode("ABCD", null, false).toString(), "ALPHANUMERIC(AB,CD),TERMINATOR()");
}
@Test
public void testMinimalEncoder5() throws WriterException {
assertEquals(MinimalEncoder.encode("ABCDE", null, false).toString(), "BYTE(A,B,C,D,E),TERMINATOR()");
}
@Test
public void testMinimalEncoder6() throws WriterException {
assertEquals(MinimalEncoder.encode("ABCDEF", null, false).toString(), "ALPHANUMERIC(AB,CD,EF),TERMINATOR()");
}
@Test
public void testMinimalEncoder7() throws WriterException {
assertEquals(MinimalEncoder.encode("ABCDEFG", null, false).toString(), "BYTE(A),ALPHANUMERIC(BC,DE,FG),TERMINATO" +
"R()");
}
@Test
public void testMinimalEncoder8() throws WriterException {
assertEquals(MinimalEncoder.encode("1", null, false).toString(), "BYTE(1),TERMINATOR()");
}
@Test
public void testMinimalEncoder9() throws WriterException {
assertEquals(MinimalEncoder.encode("12", null, false).toString(), "ALPHANUMERIC(12),TERMINATOR()");
}
@Test
public void testMinimalEncoder10() throws WriterException {
assertEquals(MinimalEncoder.encode("123", null, false).toString(), "NUMERIC(123),TERMINATOR()");
}
@Test
public void testMinimalEncoder11() throws WriterException {
assertEquals(MinimalEncoder.encode("1234", null, false).toString(), "ALPHANUMERIC(12,34),TERMINATOR()");
}
@Test
public void testMinimalEncoder12() throws WriterException {
assertEquals(MinimalEncoder.encode("12345", null, false).toString(), "NUMERIC(123),ALPHANUMERIC(45),TERMINATOR()");
}
@Test
public void testMinimalEncoder13() throws WriterException {
assertEquals(MinimalEncoder.encode("123456", null, false).toString(), "NUMERIC(123,456),TERMINATOR()");
}
@Test
public void testMinimalEncoder14() throws WriterException {
assertEquals(MinimalEncoder.encode("123A", null, false).toString(), "ALPHANUMERIC(12,3A),TERMINATOR()");
}
@Test
public void testMinimalEncoder15() throws WriterException {
assertEquals(MinimalEncoder.encode("A1", null, false).toString(), "ALPHANUMERIC(A1),TERMINATOR()");
}
@Test
public void testMinimalEncoder16() throws WriterException {
assertEquals(MinimalEncoder.encode("A12", null, false).toString(), "BYTE(A,1,2),TERMINATOR()");
}
@Test
public void testMinimalEncoder17() throws WriterException {
assertEquals(MinimalEncoder.encode("A123", null, false).toString(), "ALPHANUMERIC(A1,23),TERMINATOR()");
}
@Test
public void testMinimalEncoder18() throws WriterException {
assertEquals(MinimalEncoder.encode("A1234", null, false).toString(), "ALPHANUMERIC(A1),NUMERIC(234),TERMINATOR()");
}
@Test
public void testMinimalEncoder19() throws WriterException {
assertEquals(MinimalEncoder.encode("AB1", null, false).toString(), "BYTE(A,B,1),TERMINATOR()");
}
@Test
public void testMinimalEncoder20() throws WriterException {
assertEquals(MinimalEncoder.encode("AB12", null, false).toString(), "ALPHANUMERIC(AB,12),TERMINATOR()");
}
@Test
public void testMinimalEncoder21() throws WriterException {
assertEquals(MinimalEncoder.encode("AB123", null, false).toString(), "ALPHANUMERIC(AB),NUMERIC(123),TERMINATOR()");
}
@Test
public void testMinimalEncoder22() throws WriterException {
assertEquals(MinimalEncoder.encode("AB1234", null, false).toString(), "ALPHANUMERIC(AB,12,34),TERMINATOR()");
}
@Test
public void testMinimalEncoder23() throws WriterException {
assertEquals(MinimalEncoder.encode("ABC1", null, false).toString(), "ALPHANUMERIC(AB,C1),TERMINATOR()");
}
@Test
public void testMinimalEncoder24() throws WriterException {
assertEquals(MinimalEncoder.encode("ABC12", null, false).toString(), "BYTE(A,B,C,1,2),TERMINATOR()");
}
@Test
public void testMinimalEncoder25() throws WriterException {
assertEquals(MinimalEncoder.encode("ABC1234", null, false).toString(), "ALPHANUMERIC(AB,C1),NUMERIC(234),TERMINA" +
"TOR()");
}
@Test
public void testMinimalEncoder26() throws WriterException {
assertEquals(MinimalEncoder.encode("http://foo.com", null, false).toString(), "BYTE(h,t,t,p,:,/,/,f,o,o,.,c,o,m)" +
",TERMINATOR()");
}
@Test
public void testMinimalEncoder27() throws WriterException {
assertEquals(MinimalEncoder.encode("HTTP://FOO.COM", null, false).toString(), "ALPHANUMERIC(HT,TP,:/,/F,OO,.C,OM" +
"),TERMINATOR()");
}
@Test
public void testMinimalEncoder28() throws WriterException {
assertEquals(MinimalEncoder.encode("1001114670010%01201220%107211220%140045003267781", null, false).toString(),
"NUMERIC(100,111,467,001),ALPHANUMERIC(0%,01,20,12,20,%1,07,21,12,20,%1,40),NUMERIC(045,003,267,781),TERMINA" +
"TOR()");
}
@Test
public void testMinimalEncoder29() throws WriterException {
assertEquals(MinimalEncoder.encode("\u0150", null, false).toString(), "ECI(ISO-8859-2),BYTE(.),TERMINATOR()");
}
@Test
public void testMinimalEncoder30() throws WriterException {
assertEquals(MinimalEncoder.encode("\u015C", null, false).toString(), "ECI(ISO-8859-3),BYTE(.),TERMINATOR()");
}
@Test
public void testMinimalEncoder31() throws WriterException {
assertEquals(MinimalEncoder.encode("\u0150\u015C", null, false).toString(), "ECI(UTF-8),BYTE(.,.),TERMINATOR()");
}
@Test
public void testMinimalEncoder32() throws WriterException {
assertEquals(MinimalEncoder.encode("\u0150\u0150\u015C\u015C", null, false).toString(), "ECI(ISO-8859-2),BYTE(.," +
".),ECI(ISO-8859-3),BYTE(.,.),TERMINATOR()");
}
@Test
public void testMinimalEncoder33() throws WriterException {
assertEquals(MinimalEncoder.encode("abcdef\u0150ghij", null, false).toString(), "ECI(ISO-8859-2),BYTE(a,b,c,d,e," +
"f,.,g,h,i,j),TERMINATOR()");
}
@Test
public void testMinimalEncoder34() throws WriterException {
assertEquals(MinimalEncoder.encode("2938928329832983\u01502938928329832983\u015C2938928329832983", null, false)
.toString(), "NUMERIC(293,892,832,983,298),ECI(ISO-8859-2),BYTE(3,.,2),NUMERIC(938,928,329,832,983),ECI(ISO-8" +
"859-3),BYTE(.,2),NUMERIC(938,928,329,832,983),TERMINATOR()");
}
@Test
public void testMinimalEncoder35() throws WriterException {
assertEquals(MinimalEncoder.encode("1001114670010%01201220%107211220%140045003267781", null, true).toString(),
"FNC1_FIRST_POSITION(),NUMERIC(100,111,467,001),ALPHANUMERIC(0%,01,20,12,20,%1,07,21,12,20,%1,40),NUMERIC(04" +
"5,003,267,781),TERMINATOR()");
}
private static void verifyGS1EncodedData(QRCode qrCode) {
String expected = "<<\n" +
" mode: ALPHANUMERIC\n" +