Added the initial version of my UPC reader and modified some common files

as necessary to get it building and used by the J2SE command line test.


git-svn-id: https://zxing.googlecode.com/svn/trunk@31 59b500cc-1b3d-0410-9834-0bbf25fbcc57
This commit is contained in:
dswitkin 2007-11-12 23:13:15 +00:00
parent fbb9d110de
commit 89c7787517
5 changed files with 386 additions and 14 deletions

View file

@ -17,6 +17,7 @@
package com.google.zxing;
import com.google.zxing.qrcode.QRCodeReader;
import com.google.zxing.upc.UPCReader;
import java.util.Hashtable;
@ -39,13 +40,37 @@ public final class MultiFormatReader implements Reader {
throws ReaderException {
Hashtable possibleFormats =
hints == null ? null : (Hashtable) hints.get(DecodeHintType.POSSIBLE_FORMATS);
// TODO for now we are only support QR Code so this behaves accordingly. This needs to
// become more sophisticated
if (possibleFormats == null || possibleFormats.contains(BarcodeFormat.QR_CODE)) {
return new QRCodeReader().decode(image, hints);
boolean tryUPC = false;
boolean tryQR = false;
if (possibleFormats == null) {
tryUPC = true;
tryQR = true;
} else if (possibleFormats.contains(BarcodeFormat.UPC)) {
tryUPC = true;
} else if (possibleFormats.contains(BarcodeFormat.QR_CODE)) {
tryQR = true;
} else {
throw new ReaderException();
}
// UPC is much faster to decode, so try it first.
if (tryUPC) {
try {
return new UPCReader().decode(image, hints);
} catch (ReaderException e) {
}
}
// Then fall through to QR codes.
if (tryQR) {
try {
return new QRCodeReader().decode(image, hints);
} catch (ReaderException e) {
}
}
throw new ReaderException();
}
}

View file

@ -23,14 +23,12 @@ package com.google.zxing.common;
*/
public final class BitArray {
private final int[] bits;
private int[] bits;
private int size;
public BitArray(int size) {
int arraySize = size >> 5;
if ((size & 0x1F) != 0) {
arraySize++;
}
bits = new int[arraySize];
this.size = size;
this.bits = makeArray(size);
}
/**
@ -55,7 +53,7 @@ public final class BitArray {
*
* @param i first bit to set
* @param newBits the new value of the next 32 bits. Note again that the least-significant bit
* correponds to bit i, the next-least-significant to i+1, and so on.
* corresponds to bit i, the next-least-significant to i+1, and so on.
*/
public void setBulk(int i, int newBits) {
bits[i >> 5] = newBits;
@ -78,5 +76,31 @@ public final class BitArray {
public int[] getBitArray() {
return bits;
}
/**
* Reverses all bits in the array.
*/
public void reverse() {
int[] newBits = makeArray(size);
int max = newBits.length;
for (int i = 0; i < max; i++) {
newBits[i] = 0;
}
for (int i = 0; i < size; i++) {
if (this.get(size - i - 1)) {
newBits[i >> 5] |= 1 << (i & 0x1F);
}
}
bits = newBits;
}
private int[] makeArray(int size) {
int arraySize = size >> 5;
if ((size & 0x1F) != 0) {
arraySize++;
}
int[] result = new int[arraySize];
return result;
}
}

View file

@ -0,0 +1,260 @@
/*
* Copyright 2007 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.upc;
import com.google.zxing.common.BitArray;
import com.google.zxing.MonochromeBitmapSource;
import java.util.Arrays;
/**
* This class takes a bitmap, and attempts to return a String which is the contents of the UPC
* barcode in the image. It should be scale-invariant, but does not make any corrections for
* rotation or skew.
*
* @author dswitkin@google.com (Daniel Switkin)
*/
public class UPCDecoder {
UPCDecoder(MonochromeBitmapSource bitmap) {
mBitmap = bitmap;
if (bitmap != null) {
mWidth = bitmap.getWidth();
mHeight = bitmap.getHeight();
}
}
// To decode the image, we follow a search pattern defined in kBitmapSearchPattern. It is a
// list of percentages which translate to row numbers to scan across. For each row, we scan
// left to right, and if that fails, we reverse the row in place and try again to see if the
// bar code was upside down.
public String decode() {
if (mBitmap == null) return "";
BitArray rowData = new BitArray(mWidth);
String longestResult = "";
int found = -1;
for (int x = 0; x < kBitmapSearchPattern.length; x++) {
int row = mHeight * kBitmapSearchPattern[x] / 100;
mBitmap.getBlackRow(row, rowData, 0, mWidth);
if (decodeRow(rowData)) {
found = x;
break;
}
//Log("decode: row " + row + " normal result: " + mResult);
if (mResult.length() > longestResult.length()) {
longestResult = mResult;
}
rowData.reverse();
if (decodeRow(rowData)) {
found = x;
break;
}
//Log("decode: row " + row + " inverted result: " + mResult);
if (mResult.length() > longestResult.length()) {
longestResult = mResult;
}
}
if (found >= 0) return mResult;
else return "";
}
// UPC-A bar codes are made up of a left marker, six digits, a middle marker, six more digits,
// and an end marker, reading from left to right. For more information, see:
//
// http://en.wikipedia.org/wiki/Universal_Product_Code
//
// TODO: Add support for UPC-E Zero Compressed bar codes.
// TODO: Add support for EAN-13 (European Article Number) bar codes.
// FIXME: Don't trust the first result from findPattern() for the start sequence - resume from
// that spot and try to start again if finding digits fails.
private boolean decodeRow(BitArray rowData) {
mResult = "";
int rowOffset = findPattern(rowData, 0, kStartEndPattern, false);
if (rowOffset < 0) return false;
//Log("Start pattern ends at column " + rowOffset);
rowOffset = decodeOneSide(rowData, rowOffset);
if (rowOffset < 0) return false;
rowOffset = findPattern(rowData, rowOffset, kMiddlePattern, true);
if (rowOffset < 0) return false;
//Log("Middle pattern ends at column " + rowOffset);
rowOffset = decodeOneSide(rowData, rowOffset);
if (rowOffset < 0) return false;
// We could attempt to read the end pattern for sanity, but there's not much point.
// UPC-A codes have 12 digits, so any other result is garbage.
return (mResult.length() == 12);
}
private int decodeOneSide(BitArray rowData, int rowOffset) {
int[] counters = new int[4];
for (int x = 0; x < 6 && rowOffset < mWidth; x++) {
recordPattern(rowData, rowOffset, counters, 4);
for (int y = 0; y < 4; y++) {
rowOffset += counters[y];
}
char c = findDigit(counters);
if (c == '-') {
return -1;
} else {
mResult += c;
}
}
return rowOffset;
}
// Returns the horizontal position just after the pattern was found if successful, otherwise
// returns -1 if the pattern was not found. Searches are always left to right, and patterns
// begin on white or black based on the flag.
private int findPattern(BitArray rowData, int rowOffset, byte[] pattern, boolean whiteFirst) {
int[] counters = new int[pattern.length];
int width = mWidth;
boolean isWhite = false;
for (; rowOffset < width; rowOffset++) {
isWhite = !rowData.get(rowOffset);
if (whiteFirst == isWhite) {
break;
}
}
int counterPosition = 0;
for (int x = rowOffset; x < width; x++) {
boolean pixel = rowData.get(x);
if ((!pixel && isWhite) || (pixel && !isWhite)) {
counters[counterPosition]++;
} else {
if (counterPosition == pattern.length - 1) {
if (doesPatternMatch(counters, pattern)) {
return x;
}
for (int y = 2; y < pattern.length; y++) {
counters[y - 2] = counters[y];
}
counterPosition--;
} else {
counterPosition++;
}
counters[counterPosition] = 1;
isWhite = !isWhite;
}
}
return -1;
}
// Records a pattern of alternating white and black pixels, returning an array of how many
// pixels of each color were seen. The pattern begins immediately based on the color of the
// first pixel encountered, so a patternSize of 3 could result in WBW or BWB.
private void recordPattern(BitArray rowData, int rowOffset, int[] counters, int patternSize) {
Arrays.fill(counters, 0);
boolean isWhite = !rowData.get(rowOffset);
int counterPosition = 0;
int width = mWidth;
for (int x = rowOffset; x < width; x++) {
boolean pixel = rowData.get(x);
if ((!pixel && isWhite) || (pixel && !isWhite)) {
counters[counterPosition]++;
} else {
counterPosition++;
if (counterPosition == patternSize) {
return;
} else {
counters[counterPosition] = 1;
isWhite = !isWhite;
}
}
}
}
// This is an optimized version of doesPatternMatch() which is specific to recognizing digits.
// The average is divided by 7 because there are 7 bits per digit, even though the color only
// alternates four times. kDigitPatterns has been premultiplied by 10 for efficiency. Notice
// that the contents of the counters array are modified to save an extra allocation, so don't
// use these values after returning from this call.
// TODO: add EAN even parity support
private char findDigit(int[] counters) {
int total = counters[0] + counters[1] + counters[2] + counters[3];
int average = total * 10 / 7;
for (int x = 0; x < 4; x++) {
counters[x] = counters[x] * 100 / average;
}
for (int x = 0; x < 10; x++) {
boolean match = true;
for (int y = 0; y < 4; y++) {
int diff = counters[y] - kDigitPatterns[x][y];
if (diff > kTolerance || diff < -kTolerance) {
match = false;
break;
}
}
if (match) return kDigits[x];
}
return '-';
}
// Finds whether the given set of pixel counters matches the requested pattern. Taking an
// average based on the number of counters offers some robustness when antialiased edges get
// interpreted as the wrong color.
// TODO: Remove the divide for performance.
private boolean doesPatternMatch(int[] counters, byte[] pattern) {
int total = 0;
for (int x = 0; x < counters.length; x++) {
total += counters[x];
}
int average = total * 10 / counters.length;
for (int x = 0; x < counters.length; x++) {
int scaledCounter = counters[x] * 100 / average;
int scaledPattern = pattern[x] * 10;
if (scaledCounter < scaledPattern - kTolerance || scaledCounter > scaledPattern + kTolerance) {
return false;
}
}
return true;
}
private static final byte[] kBitmapSearchPattern = { 50, 49, 51, 48, 52, 46, 54, 43, 57, 40, 60 };
private static final byte[] kStartEndPattern = { 1, 1, 1 };
private static final byte[] kMiddlePattern = { 1, 1, 1, 1, 1 };
private static final byte[][] kDigitPatterns = {
{ 30, 20, 10, 10 }, // 0
{ 20, 20, 20, 10 }, // 1
{ 20, 10, 20, 20 }, // 2
{ 10, 40, 10, 10 }, // 3
{ 10, 10, 30, 20 }, // 4
{ 10, 20, 30, 10 }, // 5
{ 10, 10, 10, 40 }, // 6
{ 10, 30, 10, 20 }, // 7
{ 10, 20, 10, 30 }, // 8
{ 30, 10, 10, 20 } // 9
};
private static final char[] kDigits = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' };
private static final int kTolerance = 5;
private MonochromeBitmapSource mBitmap;
private int mWidth;
private int mHeight;
private String mResult;
}

View file

@ -0,0 +1,55 @@
/*
* Copyright 2007 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.upc;
import com.google.zxing.MonochromeBitmapSource;
import com.google.zxing.Reader;
import com.google.zxing.ReaderException;
import com.google.zxing.Result;
import com.google.zxing.ResultPoint;
import java.util.Hashtable;
/**
* A reader which decodes UPC-A barcodes.
*
* @author dswitkin@google.com (Daniel Switkin)
*/
public final class UPCReader implements Reader {
private static final ResultPoint[] NO_POINTS = new ResultPoint[0];
/**
* Locates and decodes a UPC barcode in an image.
*
* @return a String representing the digits found
* @throws ReaderException if a barcode cannot be found or decoded
*/
public Result decode(MonochromeBitmapSource image) throws ReaderException {
return decode(image, null);
}
public Result decode(MonochromeBitmapSource image, Hashtable hints)
throws ReaderException {
UPCDecoder decoder = new UPCDecoder(image);
String result = decoder.decode();
if (result == null || result.length() == 0) {
throw new ReaderException("No UPC barcode found");
}
return new Result(result, NO_POINTS);
}
}

View file

@ -53,9 +53,17 @@ public final class CommandLineRunner {
private static void decode(URI uri) throws IOException, ReaderException {
BufferedImage image = ImageIO.read(uri.toURL());
String result =
new MultiFormatReader().decode(new BufferedImageMonochromeBitmapSource(image)).getText();
System.out.println(result);
if (image == null) {
System.out.println(uri.toString() + ": Could not load image");
return;
}
try {
String result =
new MultiFormatReader().decode(new BufferedImageMonochromeBitmapSource(image)).getText();
System.out.println(uri.toString() + ": " + result);
} catch (ReaderException e) {
System.out.println(uri.toString() + ": No barcode found");
}
}
}