Alternate multi QR Code reader from Hannes

git-svn-id: https://zxing.googlecode.com/svn/trunk@933 59b500cc-1b3d-0410-9834-0bbf25fbcc57
This commit is contained in:
srowen 2009-05-05 09:52:46 +00:00
parent cdbfde6df0
commit b2bd63a228
9 changed files with 505 additions and 14 deletions

View file

@ -8,6 +8,7 @@ Christian Brunschen (Google)
Daniel Switkin (Google)
David Albert (Bug Labs)
Fred Lin (Anobiit)
Hannes Erven
Isaac Potoczny-Jones
John Connolly (Bug Labs)
Joseph Wain (Google)

View file

@ -0,0 +1,75 @@
/*
* Copyright 2009 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.multi.qrcode;
import com.google.zxing.BarcodeFormat;
import com.google.zxing.MonochromeBitmapSource;
import com.google.zxing.ReaderException;
import com.google.zxing.Result;
import com.google.zxing.ResultMetadataType;
import com.google.zxing.ResultPoint;
import com.google.zxing.common.DecoderResult;
import com.google.zxing.common.DetectorResult;
import com.google.zxing.multi.MultipleBarcodeReader;
import com.google.zxing.multi.qrcode.detector.MultiDetector;
import com.google.zxing.qrcode.QRCodeReader;
import java.util.Hashtable;
import java.util.Vector;
/**
* This implementation can detect and decode multiple QR Codes in an image.
*
* @author Sean Owen
* @author Hannes Erven
*/
public final class QRCodeMultiReader extends QRCodeReader implements MultipleBarcodeReader {
private static final Result[] EMPTY_RESULT_ARRAY = new Result[0];
public Result[] decodeMultiple(MonochromeBitmapSource image) throws ReaderException {
return decodeMultiple(image, null);
}
public Result[] decodeMultiple(MonochromeBitmapSource image, Hashtable hints) throws ReaderException {
Vector results = new Vector();
DetectorResult[] detectorResult = new MultiDetector(image).detectMulti(hints);
for (int i = 0; i < detectorResult.length; i++) {
try {
DecoderResult decoderResult = getDecoder().decode(detectorResult[i].getBits());
ResultPoint[] points = detectorResult[i].getPoints();
Result result = new Result(decoderResult.getText(), decoderResult.getRawBytes(), points, BarcodeFormat.QR_CODE);
if (decoderResult.getByteSegments() != null) {
result.putMetadata(ResultMetadataType.BYTE_SEGMENTS, decoderResult.getByteSegments());
}
results.addElement(result);
} catch (ReaderException re) {
// ignore and continue
}
}
if (results.isEmpty()) {
return EMPTY_RESULT_ARRAY;
} else {
Result[] resultArray = new Result[results.size()];
for (int i = 0; i < results.size(); i++) {
resultArray[i] = (Result) results.elementAt(i);
}
return resultArray;
}
}
}

View file

@ -0,0 +1,76 @@
/*
* Copyright 2009 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.multi.qrcode.detector;
import com.google.zxing.BlackPointEstimationMethod;
import com.google.zxing.MonochromeBitmapSource;
import com.google.zxing.ReaderException;
import com.google.zxing.common.DetectorResult;
import com.google.zxing.qrcode.detector.Detector;
import com.google.zxing.qrcode.detector.FinderPatternInfo;
import java.util.Hashtable;
import java.util.Vector;
/**
* <p>Encapsulates logic that can detect one or more QR Codes in an image, even if the QR Code
* is rotated or skewed, or partially obscured.</p>
*
* @author Sean Owen
* @author Hannes Erven
*/
public final class MultiDetector extends Detector {
private static final DetectorResult[] EMPTY_DETECTOR_RESULTS = new DetectorResult[0];
public MultiDetector(MonochromeBitmapSource image) {
super(image);
}
public DetectorResult[] detectMulti(Hashtable hints) throws ReaderException {
MonochromeBitmapSource image = getImage();
if (!BlackPointEstimationMethod.TWO_D_SAMPLING.equals(image.getLastEstimationMethod())) {
image.estimateBlackPoint(BlackPointEstimationMethod.TWO_D_SAMPLING, 0);
}
MultiFinderPatternFinder finder = new MultiFinderPatternFinder(image);
FinderPatternInfo[] info = finder.findMulti(hints);
if (info == null || info.length == 0) {
throw ReaderException.getInstance();
}
Vector result = new Vector();
for (int i = 0; i < info.length; i++) {
try {
result.addElement(processFinderPatternInfo(info[i]));
} catch (ReaderException e) {
// ignore
}
}
if (result.isEmpty()) {
return EMPTY_DETECTOR_RESULTS;
} else {
DetectorResult[] resultArray = new DetectorResult[result.size()];
for (int i = 0; i < result.size(); i++) {
resultArray[i] = (DetectorResult) result.elementAt(i);
}
return resultArray;
}
}
}

View file

@ -0,0 +1,318 @@
/*
* Copyright 2009 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing.multi.qrcode.detector;
import com.google.zxing.DecodeHintType;
import com.google.zxing.MonochromeBitmapSource;
import com.google.zxing.ReaderException;
import com.google.zxing.ResultPoint;
import com.google.zxing.common.BitArray;
import com.google.zxing.common.Collections;
import com.google.zxing.common.Comparator;
import com.google.zxing.qrcode.detector.FinderPattern;
import com.google.zxing.qrcode.detector.FinderPatternFinder;
import com.google.zxing.qrcode.detector.FinderPatternInfo;
import java.util.Hashtable;
import java.util.Vector;
/**
* <p>This class attempts to find finder patterns in a QR Code. Finder patterns are the square
* markers at three corners of a QR Code.</p>
*
* <p>This class is not thread-safe and should not be reused.</p>
*
* <p>In contrast to {@link FinderPatternFinder}, this class will return an array of all possible
* QR code locations in the image.</p>
*
* <p>Use the TRY_HARDER hint to ask for a more thorough detection.</p>
*
* @author Sean Owen
* @author Hannes Erven
*/
final class MultiFinderPatternFinder extends FinderPatternFinder {
private static final FinderPatternInfo[] EMPTY_RESULT_ARRAY = new FinderPatternInfo[0];
// TODO MIN_MODULE_COUNT and MAX_MODULE_COUNT would be great
// hints to ask the user for since it limits the number of regions to decode
private static final float MAX_MODULE_COUNT_PER_EDGE = 180; // max. legal count of modules per QR code edge (177)
private static final float MIN_MODULE_COUNT_PER_EDGE = 9; // min. legal count per modules per QR code edge (11)
/**
* More or less arbitrary cutoff point for determining if two finder patterns might belong
* to the same code if they differ less than DIFF_MODSIZE_CUTOFF_PERCENT percent in their
* estimated modules sizes.
*/
private static final float DIFF_MODSIZE_CUTOFF_PERCENT = 0.05f;
/**
* More or less arbitrary cutoff point for determining if two finder patterns might belong
* to the same code if they differ less than DIFF_MODSIZE_CUTOFF pixels/module in their
* estimated modules sizes.
*/
private static final float DIFF_MODSIZE_CUTOFF = 0.5f;
/**
* A comparator that orders FinderPatterns by their estimated module size.
*/
private static class ModuleSizeComparator implements Comparator {
public int compare(Object center1, Object center2) {
float value = ((FinderPattern) center2).getEstimatedModuleSize() -
((FinderPattern) center1).getEstimatedModuleSize();
return value < 0.0 ? -1 : value > 0.0 ? 1 : 0;
}
}
/**
* <p>Creates a finder that will search the image for three finder patterns.</p>
*
* @param image image to search
*/
MultiFinderPatternFinder(MonochromeBitmapSource image) {
super(image);
}
/**
* @return the 3 best {@link FinderPattern}s from our list of candidates. The "best" are
* those that have been detected at least {@link #CENTER_QUORUM} times, and whose module
* size differs from the average among those patterns the least
* @throws ReaderException if 3 such finder patterns do not exist
*/
private FinderPattern[][] selectBestPatterns() throws ReaderException {
Vector possibleCenters = getPossibleCenters();
int size = possibleCenters.size();
if (size < 3) {
// Couldn't find enough finder patterns
throw ReaderException.getInstance();
}
/*
* Begin HE modifications to safely detect multiple codes of equal size
*/
if (size == 3) {
return new FinderPattern[][]{
new FinderPattern[]{
(FinderPattern) possibleCenters.elementAt(0),
(FinderPattern) possibleCenters.elementAt(1),
(FinderPattern) possibleCenters.elementAt(2)
}
};
}
// Sort by estimated module size to speed up the upcoming checks
Collections.insertionSort(possibleCenters, new ModuleSizeComparator());
/*
* Now lets start: build a list of tuples of three finder locations that
* - feature similar module sizes
* - are placed in a distance so the estimated module count is within the QR specification
* - have similar distance between upper left/right and left top/bottom finder patterns
* - form a triangle with 90° angle (checked by comparing top right/bottom left distance with pythagoras)
*
* Note: we allow each point to be used for more than one code region: this might seem counterintuitive at first,
* but the performance penalty is not that big. At this point, we cannot make a good quality decision whether
* the three finders actually represent a QR code, or are just by chance layouted so it looks like there might
* be a QR code there.
* So, if the layout seems right, lets have the decoder try to decode.
*/
Vector results = new Vector(); // holder for the results
for (int i1 = 0; i1 < (size - 2); i1++) {
FinderPattern p1 = (FinderPattern) possibleCenters.elementAt(i1);
if (p1 == null) {
continue;
}
for (int i2 = i1 + 1; i2 < (size - 1); i2++) {
FinderPattern p2 = (FinderPattern) possibleCenters.elementAt(i2);
if (p2 == null) {
continue;
}
// Compare the expected module sizes; if they are really off, skip
float vModSize12 = (p1.getEstimatedModuleSize() - p2.getEstimatedModuleSize()) /
(Math.min(p1.getEstimatedModuleSize(), p2.getEstimatedModuleSize()));
float vModSize12A = Math.abs(p1.getEstimatedModuleSize() - p2.getEstimatedModuleSize());
if (vModSize12A > DIFF_MODSIZE_CUTOFF && vModSize12 >= DIFF_MODSIZE_CUTOFF_PERCENT) {
// break, since elements are ordered by the module size deviation there cannot be
// any more interesting elements for the given p1.
break;
}
for (int i3 = i2 + 1; i3 < size; i3++) {
FinderPattern p3 = (FinderPattern) possibleCenters.elementAt(i3);
if (p3 == null) {
continue;
}
// Compare the expected module sizes; if they are really off, skip
float vModSize23 = (p2.getEstimatedModuleSize() - p3.getEstimatedModuleSize()) /
(Math.min(p2.getEstimatedModuleSize(), p3.getEstimatedModuleSize()));
float vModSize23A = Math.abs(p2.getEstimatedModuleSize() - p3.getEstimatedModuleSize());
if (vModSize23A > DIFF_MODSIZE_CUTOFF && vModSize23 >= DIFF_MODSIZE_CUTOFF_PERCENT) {
// break, since elements are ordered by the module size deviation there cannot be
// any more interesting elements for the given p1.
break;
}
FinderPattern[] test = {p1, p2, p3};
ResultPoint.orderBestPatterns(test);
// Calculate the distances: a = topleft-bottomleft, b=topleft-topright, c = diagonal
FinderPatternInfo info = new FinderPatternInfo(test);
float dA = ResultPoint.distance(info.getTopLeft(), info.getBottomLeft());
float dC = ResultPoint.distance(info.getTopRight(), info.getBottomLeft());
float dB = ResultPoint.distance(info.getTopLeft(), info.getTopRight());
// Check the sizes
float estimatedModuleCount = ((dA + dB) / p1.getEstimatedModuleSize()) / 2;
if (estimatedModuleCount > MAX_MODULE_COUNT_PER_EDGE || estimatedModuleCount < MIN_MODULE_COUNT_PER_EDGE) {
continue;
}
// Calculate the difference of the edge lengths in percent
float vABBC = Math.abs(((dA - dB) / Math.min(dA, dB)));
if (vABBC >= 0.1f) {
continue;
}
// Calculate the diagonal length by assuming a 90° angle at topleft
float dCpy = (float) Math.sqrt(dA * dA + dB * dB);
// Compare to the real distance in %
float vPyC = Math.abs(((dC - dCpy) / Math.min(dC, dCpy)));
if (vPyC >= 0.1f) {
continue;
}
// All tests passed!
results.addElement(test);
} // end iterate p3
} // end iterate p2
} // end iterate p1
if (!results.isEmpty()) {
FinderPattern[][] resultArray = new FinderPattern[results.size()][];
for (int i = 0; i < results.size(); i++) {
resultArray[i] = (FinderPattern[]) results.elementAt(i);
}
return resultArray;
}
// Nothing found!
throw ReaderException.getInstance();
}
public FinderPatternInfo[] findMulti(Hashtable hints) throws ReaderException {
boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER);
MonochromeBitmapSource image = getImage();
int maxI = image.getHeight();
int maxJ = image.getWidth();
// We are looking for black/white/black/white/black modules in
// 1:1:3:1:1 ratio; this tracks the number of such modules seen so far
// Let's assume that the maximum version QR Code we support takes up 1/4 the height of the
// image, and then account for the center being 3 modules in size. This gives the smallest
// number of pixels the center could be, so skip this often. When trying harder, look for all
// QR versions regardless of how dense they are.
int iSkip = (int) (maxI / (MAX_MODULES * 4.0f) * 3);
if (iSkip < MIN_SKIP || tryHarder) {
iSkip = MIN_SKIP;
}
int[] stateCount = new int[5];
for (int i = iSkip - 1; i < maxI; i += iSkip) {
BitArray blackRow = new BitArray(maxJ);
// Get a row of black/white values
blackRow = image.getBlackRow(i, blackRow, 0, maxJ);
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
stateCount[3] = 0;
stateCount[4] = 0;
int currentState = 0;
for (int j = 0; j < maxJ; j++) {
if (blackRow.get(j)) {
// Black pixel
if ((currentState & 1) == 1) { // Counting white pixels
currentState++;
}
stateCount[currentState]++;
} else { // White pixel
if ((currentState & 1) == 0) { // Counting black pixels
if (currentState == 4) { // A winner?
if (foundPatternCross(stateCount)) { // Yes
boolean confirmed = handlePossibleCenter(stateCount, i, j);
if (!confirmed) {
do { // Advance to next black pixel
j++;
} while (j < maxJ && !blackRow.get(j));
j--; // back up to that last white pixel
}
// Clear state to start looking again
currentState = 0;
stateCount[0] = 0;
stateCount[1] = 0;
stateCount[2] = 0;
stateCount[3] = 0;
stateCount[4] = 0;
} else { // No, shift counts back by two
stateCount[0] = stateCount[2];
stateCount[1] = stateCount[3];
stateCount[2] = stateCount[4];
stateCount[3] = 1;
stateCount[4] = 0;
currentState = 3;
}
} else {
stateCount[++currentState]++;
}
} else { // Counting white pixels
stateCount[currentState]++;
}
}
} // for j=...
if (foundPatternCross(stateCount)) {
handlePossibleCenter(stateCount, i, maxJ);
} // end if foundPatternCross
} // for i=iSkip-1 ...
FinderPattern[][] patternInfo = selectBestPatterns();
Vector result = new Vector();
for (int i = 0; i < patternInfo.length; i++) {
FinderPattern[] pattern = patternInfo[i];
ResultPoint.orderBestPatterns(pattern);
result.addElement(new FinderPatternInfo(pattern));
}
if (result.isEmpty()) {
return EMPTY_RESULT_ARRAY;
} else {
FinderPatternInfo[] resultArray = new FinderPatternInfo[result.size()];
for (int i = 0; i < result.size(); i++) {
resultArray[i] = (FinderPatternInfo) result.elementAt(i);
}
return resultArray;
}
}
}

View file

@ -37,12 +37,16 @@ import java.util.Hashtable;
*
* @author Sean Owen
*/
public final class QRCodeReader implements Reader {
public class QRCodeReader implements Reader {
private static final ResultPoint[] NO_POINTS = new ResultPoint[0];
private final Decoder decoder = new Decoder();
protected Decoder getDecoder() {
return decoder;
}
/**
* Locates and decodes a QR code in an image.
*

View file

@ -33,7 +33,7 @@ import java.util.Hashtable;
*
* @author Sean Owen
*/
public final class Detector {
public class Detector {
private final MonochromeBitmapSource image;
@ -41,6 +41,10 @@ public final class Detector {
this.image = image;
}
protected MonochromeBitmapSource getImage() {
return image;
}
/**
* <p>Detects a QR Code in an image, simply.</p>
*
@ -68,6 +72,11 @@ public final class Detector {
FinderPatternFinder finder = new FinderPatternFinder(image);
FinderPatternInfo info = finder.find(hints);
return processFinderPatternInfo(info);
}
protected DetectorResult processFinderPatternInfo(FinderPatternInfo info) throws ReaderException {
FinderPattern topLeft = info.getTopLeft();
FinderPattern topRight = info.getTopRight();
FinderPattern bottomLeft = info.getBottomLeft();

View file

@ -36,7 +36,7 @@ public final class FinderPattern extends ResultPoint {
this.count = 1;
}
float getEstimatedModuleSize() {
public float getEstimatedModuleSize() {
return estimatedModuleSize;
}

View file

@ -35,11 +35,11 @@ import java.util.Vector;
*
* @author Sean Owen
*/
final class FinderPatternFinder {
public class FinderPatternFinder {
private static final int CENTER_QUORUM = 2;
private static final int MIN_SKIP = 3; // 1 pixel/module times 3 modules/center
private static final int MAX_MODULES = 57; // support up to version 10 for mobile clients
protected static final int MIN_SKIP = 3; // 1 pixel/module times 3 modules/center
protected static final int MAX_MODULES = 57; // support up to version 10 for mobile clients
private static final int INTEGER_MATH_SHIFT = 8;
private final MonochromeBitmapSource image;
@ -52,12 +52,20 @@ final class FinderPatternFinder {
*
* @param image image to search
*/
FinderPatternFinder(MonochromeBitmapSource image) {
public FinderPatternFinder(MonochromeBitmapSource image) {
this.image = image;
this.possibleCenters = new Vector();
this.crossCheckStateCount = new int[5];
}
protected MonochromeBitmapSource getImage() {
return image;
}
protected Vector getPossibleCenters() {
return possibleCenters;
}
FinderPatternInfo find(Hashtable hints) throws ReaderException {
boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER);
int maxI = image.getHeight();
@ -180,7 +188,7 @@ final class FinderPatternFinder {
* @return true iff the proportions of the counts is close enough to the 1/1/3/1/1 ratios
* used by finder patterns to be considered a match
*/
private static boolean foundPatternCross(int[] stateCount) {
protected static boolean foundPatternCross(int[] stateCount) {
int totalModuleSize = 0;
for (int i = 0; i < 5; i++) {
int count = stateCount[i];
@ -370,7 +378,7 @@ final class FinderPatternFinder {
* @param j end of possible finder pattern in row
* @return true if a finder pattern candidate was found this time
*/
private boolean handlePossibleCenter(int[] stateCount,
protected boolean handlePossibleCenter(int[] stateCount,
int i,
int j) {
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];

View file

@ -22,27 +22,27 @@ package com.google.zxing.qrcode.detector;
*
* @author Sean Owen
*/
final class FinderPatternInfo {
public final class FinderPatternInfo {
private final FinderPattern bottomLeft;
private final FinderPattern topLeft;
private final FinderPattern topRight;
FinderPatternInfo(FinderPattern[] patternCenters) {
public FinderPatternInfo(FinderPattern[] patternCenters) {
this.bottomLeft = patternCenters[0];
this.topLeft = patternCenters[1];
this.topRight = patternCenters[2];
}
FinderPattern getBottomLeft() {
public FinderPattern getBottomLeft() {
return bottomLeft;
}
FinderPattern getTopLeft() {
public FinderPattern getTopLeft() {
return topLeft;
}
FinderPattern getTopRight() {
public FinderPattern getTopRight() {
return topRight;
}