using System; using System.Text; /* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ namespace com.google.zxing { using MathUtils = com.google.zxing.common.detector.MathUtils; /// ///

Encapsulates a point of interest in an image containing a barcode. Typically, this /// would be the location of a finder pattern or the corner of the barcode, for example.

/// /// @author Sean Owen ///
public class ResultPoint { private readonly float x; private readonly float y; public ResultPoint(float x, float y) { this.x = x; this.y = y; } public float X { get { return x; } } public float Y { get { return y; } } public override bool Equals(object other) { if (other is ResultPoint) { ResultPoint otherPoint = (ResultPoint) other; return x == otherPoint.x && y == otherPoint.y; } return false; } public override int GetHashCode() { //return 31 * float.floatToIntBits(x) + float.floatToIntBits(y); int xbits = BitConverter.ToInt32(BitConverter.GetBytes(x), 0); int ybits = BitConverter.ToInt32(BitConverter.GetBytes(y), 0); return 31 * xbits + ybits; } public override string ToString() { StringBuilder result = new StringBuilder(25); result.Append('('); result.Append(x); result.Append(','); result.Append(y); result.Append(')'); return result.ToString(); } /// ///

Orders an array of three ResultPoints in an order [A,B,C] such that AB < AC and /// BC < AC and the angle between BC and BA is less than 180 degrees. ///

public static void orderBestPatterns(ResultPoint[] patterns) { // Find distances between pattern centers float zeroOneDistance = distance(patterns[0], patterns[1]); float oneTwoDistance = distance(patterns[1], patterns[2]); float zeroTwoDistance = distance(patterns[0], patterns[2]); ResultPoint pointA; ResultPoint pointB; ResultPoint pointC; // Assume one closest to other two is B; A and C will just be guesses at first if (oneTwoDistance >= zeroOneDistance && oneTwoDistance >= zeroTwoDistance) { pointB = patterns[0]; pointA = patterns[1]; pointC = patterns[2]; } else if (zeroTwoDistance >= oneTwoDistance && zeroTwoDistance >= zeroOneDistance) { pointB = patterns[1]; pointA = patterns[0]; pointC = patterns[2]; } else { pointB = patterns[2]; pointA = patterns[0]; pointC = patterns[1]; } // Use cross product to figure out whether A and C are correct or flipped. // This asks whether BC x BA has a positive z component, which is the arrangement // we want for A, B, C. If it's negative, then we've got it flipped around and // should swap A and C. if (crossProductZ(pointA, pointB, pointC) < 0.0f) { ResultPoint temp = pointA; pointA = pointC; pointC = temp; } patterns[0] = pointA; patterns[1] = pointB; patterns[2] = pointC; } /// distance between two points public static float distance(ResultPoint pattern1, ResultPoint pattern2) { return MathUtils.distance(pattern1.x, pattern1.y, pattern2.x, pattern2.y); } /// /// Returns the z component of the cross product between vectors BC and BA. /// private static float crossProductZ(ResultPoint pointA, ResultPoint pointB, ResultPoint pointC) { float bX = pointB.x; float bY = pointB.y; return ((pointC.x - bX) * (pointA.y - bY)) - ((pointC.y - bY) * (pointA.x - bX)); } } }