using System; using System.Collections.Generic; /* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ namespace com.google.zxing.qrcode.detector { using DecodeHintType = com.google.zxing.DecodeHintType; using FormatException = com.google.zxing.FormatException; using NotFoundException = com.google.zxing.NotFoundException; using ResultPoint = com.google.zxing.ResultPoint; using ResultPointCallback = com.google.zxing.ResultPointCallback; using BitMatrix = com.google.zxing.common.BitMatrix; using DetectorResult = com.google.zxing.common.DetectorResult; using GridSampler = com.google.zxing.common.GridSampler; using PerspectiveTransform = com.google.zxing.common.PerspectiveTransform; using MathUtils = com.google.zxing.common.detector.MathUtils; using Version = com.google.zxing.qrcode.decoder.Version; /// ///

Encapsulates logic that can detect a QR Code in an image, even if the QR Code /// is rotated or skewed, or partially obscured.

/// /// @author Sean Owen ///
public class Detector { private readonly BitMatrix image; private ResultPointCallback resultPointCallback; public Detector(BitMatrix image) { this.image = image; } protected internal BitMatrix Image { get { return image; } } protected internal ResultPointCallback ResultPointCallback { get { return resultPointCallback; } } /// ///

Detects a QR Code in an image, simply.

///
/// encapsulating results of detecting a QR Code /// if no QR Code can be found //JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET: //ORIGINAL LINE: public com.google.zxing.common.DetectorResult detect() throws com.google.zxing.NotFoundException, com.google.zxing.FormatException public virtual DetectorResult detect() { return detect(null); } /// ///

Detects a QR Code in an image, simply.

///
/// optional hints to detector /// encapsulating results of detecting a QR Code /// if QR Code cannot be found /// if a QR Code cannot be decoded //JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET: //ORIGINAL LINE: public final com.google.zxing.common.DetectorResult detect(java.util.Map hints) throws com.google.zxing.NotFoundException, com.google.zxing.FormatException public DetectorResult detect(IDictionary hints) { //resultPointCallback = hints == null ? null : (ResultPointCallback)hints[DecodeHintType.NEED_RESULT_POINT_CALLBACK]; ResultPointCallback resultPointCallback = null; if (hints != null && hints.ContainsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK)) { resultPointCallback = (ResultPointCallback)hints[DecodeHintType.NEED_RESULT_POINT_CALLBACK]; } FinderPatternFinder finder = new FinderPatternFinder(image, resultPointCallback); FinderPatternInfo info = finder.find(hints); return processFinderPatternInfo(info); } //JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET: //ORIGINAL LINE: protected final com.google.zxing.common.DetectorResult processFinderPatternInfo(FinderPatternInfo info) throws com.google.zxing.NotFoundException, com.google.zxing.FormatException protected internal DetectorResult processFinderPatternInfo(FinderPatternInfo info) { FinderPattern topLeft = info.TopLeft; FinderPattern topRight = info.TopRight; FinderPattern bottomLeft = info.BottomLeft; float moduleSize = calculateModuleSize(topLeft, topRight, bottomLeft); if (moduleSize < 1.0f) { throw NotFoundException.NotFoundInstance; } int dimension = computeDimension(topLeft, topRight, bottomLeft, moduleSize); Version provisionalVersion = Version.getProvisionalVersionForDimension(dimension); int modulesBetweenFPCenters = provisionalVersion.DimensionForVersion - 7; AlignmentPattern alignmentPattern = null; // Anything above version 1 has an alignment pattern if (provisionalVersion.AlignmentPatternCenters.Length > 0) { // Guess where a "bottom right" finder pattern would have been float bottomRightX = topRight.X - topLeft.X + bottomLeft.X; float bottomRightY = topRight.Y - topLeft.Y + bottomLeft.Y; // Estimate that alignment pattern is closer by 3 modules // from "bottom right" to known top left location float correctionToTopLeft = 1.0f - 3.0f / (float) modulesBetweenFPCenters; int estAlignmentX = (int)(topLeft.X + correctionToTopLeft * (bottomRightX - topLeft.X)); int estAlignmentY = (int)(topLeft.Y + correctionToTopLeft * (bottomRightY - topLeft.Y)); // Kind of arbitrary -- expand search radius before giving up for (int i = 4; i <= 16; i <<= 1) { try { alignmentPattern = findAlignmentInRegion(moduleSize, estAlignmentX, estAlignmentY, (float) i); break; } catch (NotFoundException re) { // try next round } } // If we didn't find alignment pattern... well try anyway without it } PerspectiveTransform transform = createTransform(topLeft, topRight, bottomLeft, alignmentPattern, dimension); BitMatrix bits = sampleGrid(image, transform, dimension); ResultPoint[] points; if (alignmentPattern == null) { points = new ResultPoint[]{bottomLeft, topLeft, topRight}; } else { points = new ResultPoint[]{bottomLeft, topLeft, topRight, alignmentPattern}; } return new DetectorResult(bits, points); } private static PerspectiveTransform createTransform(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft, ResultPoint alignmentPattern, int dimension) { float dimMinusThree = (float) dimension - 3.5f; float bottomRightX; float bottomRightY; float sourceBottomRightX; float sourceBottomRightY; if (alignmentPattern != null) { bottomRightX = alignmentPattern.X; bottomRightY = alignmentPattern.Y; sourceBottomRightX = dimMinusThree - 3.0f; sourceBottomRightY = sourceBottomRightX; } else { // Don't have an alignment pattern, just make up the bottom-right point bottomRightX = (topRight.X - topLeft.X) + bottomLeft.X; bottomRightY = (topRight.Y - topLeft.Y) + bottomLeft.Y; sourceBottomRightX = dimMinusThree; sourceBottomRightY = dimMinusThree; } return PerspectiveTransform.quadrilateralToQuadrilateral(3.5f, 3.5f, dimMinusThree, 3.5f, sourceBottomRightX, sourceBottomRightY, 3.5f, dimMinusThree, topLeft.X, topLeft.Y, topRight.X, topRight.Y, bottomRightX, bottomRightY, bottomLeft.X, bottomLeft.Y); } //JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET: //ORIGINAL LINE: private static com.google.zxing.common.BitMatrix sampleGrid(com.google.zxing.common.BitMatrix image, com.google.zxing.common.PerspectiveTransform transform, int dimension) throws com.google.zxing.NotFoundException private static BitMatrix sampleGrid(BitMatrix image, PerspectiveTransform transform, int dimension) { GridSampler sampler = GridSampler.Instance; return sampler.sampleGrid(image, dimension, dimension, transform); } /// ///

Computes the dimension (number of modules on a size) of the QR Code based on the position /// of the finder patterns and estimated module size.

///
//JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET: //ORIGINAL LINE: private static int computeDimension(com.google.zxing.ResultPoint topLeft, com.google.zxing.ResultPoint topRight, com.google.zxing.ResultPoint bottomLeft, float moduleSize) throws com.google.zxing.NotFoundException private static int computeDimension(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft, float moduleSize) { int tltrCentersDimension = MathUtils.round(ResultPoint.distance(topLeft, topRight) / moduleSize); int tlblCentersDimension = MathUtils.round(ResultPoint.distance(topLeft, bottomLeft) / moduleSize); int dimension = ((tltrCentersDimension + tlblCentersDimension) >> 1) + 7; switch (dimension & 0x03) // mod 4 { case 0: dimension++; break; // 1? do nothing case 2: dimension--; break; case 3: throw NotFoundException.NotFoundInstance; } return dimension; } /// ///

Computes an average estimated module size based on estimated derived from the positions /// of the three finder patterns.

///
protected internal float calculateModuleSize(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft) { // Take the average return (calculateModuleSizeOneWay(topLeft, topRight) + calculateModuleSizeOneWay(topLeft, bottomLeft)) / 2.0f; } /// ///

Estimates module size based on two finder patterns -- it uses /// to figure the /// width of each, measuring along the axis between their centers.

///
private float calculateModuleSizeOneWay(ResultPoint pattern, ResultPoint otherPattern) { float moduleSizeEst1 = sizeOfBlackWhiteBlackRunBothWays((int) pattern.X, (int) pattern.Y, (int) otherPattern.X, (int) otherPattern.Y); float moduleSizeEst2 = sizeOfBlackWhiteBlackRunBothWays((int) otherPattern.X, (int) otherPattern.Y, (int) pattern.X, (int) pattern.Y); if (float.IsNaN(moduleSizeEst1)) { return moduleSizeEst2 / 7.0f; } if (float.IsNaN(moduleSizeEst2)) { return moduleSizeEst1 / 7.0f; } // Average them, and divide by 7 since we've counted the width of 3 black modules, // and 1 white and 1 black module on either side. Ergo, divide sum by 14. return (moduleSizeEst1 + moduleSizeEst2) / 14.0f; } /// /// See ; computes the total width of /// a finder pattern by looking for a black-white-black run from the center in the direction /// of another point (another finder pattern center), and in the opposite direction too.

///
private float sizeOfBlackWhiteBlackRunBothWays(int fromX, int fromY, int toX, int toY) { float result = sizeOfBlackWhiteBlackRun(fromX, fromY, toX, toY); // Now count other way -- don't run off image though of course float scale = 1.0f; int otherToX = fromX - (toX - fromX); if (otherToX < 0) { scale = (float) fromX / (float)(fromX - otherToX); otherToX = 0; } else if (otherToX >= image.Width) { scale = (float)(image.Width - 1 - fromX) / (float)(otherToX - fromX); otherToX = image.Width - 1; } int otherToY = (int)(fromY - (toY - fromY) * scale); scale = 1.0f; if (otherToY < 0) { scale = (float) fromY / (float)(fromY - otherToY); otherToY = 0; } else if (otherToY >= image.Height) { scale = (float)(image.Height - 1 - fromY) / (float)(otherToY - fromY); otherToY = image.Height - 1; } otherToX = (int)(fromX + (otherToX - fromX) * scale); result += sizeOfBlackWhiteBlackRun(fromX, fromY, otherToX, otherToY); // Middle pixel is double-counted this way; subtract 1 return result - 1.0f; } /// ///

This method traces a line from a point in the image, in the direction towards another point. /// It begins in a black region, and keeps going until it finds white, then black, then white again. /// It reports the distance from the start to this point.

/// ///

This is used when figuring out how wide a finder pattern is, when the finder pattern /// may be skewed or rotated.

///
private float sizeOfBlackWhiteBlackRun(int fromX, int fromY, int toX, int toY) { // Mild variant of Bresenham's algorithm; // see http://en.wikipedia.org/wiki/Bresenham's_line_algorithm bool steep = Math.Abs(toY - fromY) > Math.Abs(toX - fromX); if (steep) { int temp = fromX; fromX = fromY; fromY = temp; temp = toX; toX = toY; toY = temp; } int dx = Math.Abs(toX - fromX); int dy = Math.Abs(toY - fromY); int error = -dx >> 1; int xstep = fromX < toX ? 1 : -1; int ystep = fromY < toY ? 1 : -1; // In black pixels, looking for white, first or second time. int state = 0; // Loop up until x == toX, but not beyond int xLimit = toX + xstep; for (int x = fromX, y = fromY; x != xLimit; x += xstep) { int realX = steep ? y : x; int realY = steep ? x : y; // Does current pixel mean we have moved white to black or vice versa? // Scanning black in state 0,2 and white in state 1, so if we find the wrong // color, advance to next state or end if we are in state 2 already if ((state == 1) == image.get(realX, realY)) { if (state == 2) { return MathUtils.distance(x, y, fromX, fromY); } state++; } error += dy; if (error > 0) { if (y == toY) { break; } y += ystep; error -= dx; } } // Found black-white-black; give the benefit of the doubt that the next pixel outside the image // is "white" so this last point at (toX+xStep,toY) is the right ending. This is really a // small approximation; (toX+xStep,toY+yStep) might be really correct. Ignore this. if (state == 2) { return MathUtils.distance(toX + xstep, toY, fromX, fromY); } // else we didn't find even black-white-black; no estimate is really possible return float.NaN; } /// ///

Attempts to locate an alignment pattern in a limited region of the image, which is /// guessed to contain it. This method uses .

///
/// estimated module size so far /// x coordinate of center of area probably containing alignment pattern /// y coordinate of above /// number of pixels in all directions to search from the center /// if found, or null otherwise /// if an unexpected error occurs during detection //JAVA TO C# CONVERTER WARNING: Method 'throws' clauses are not available in .NET: //ORIGINAL LINE: protected final AlignmentPattern findAlignmentInRegion(float overallEstModuleSize, int estAlignmentX, int estAlignmentY, float allowanceFactor) throws com.google.zxing.NotFoundException protected internal AlignmentPattern findAlignmentInRegion(float overallEstModuleSize, int estAlignmentX, int estAlignmentY, float allowanceFactor) { // Look for an alignment pattern (3 modules in size) around where it // should be int allowance = (int)(allowanceFactor * overallEstModuleSize); int alignmentAreaLeftX = Math.Max(0, estAlignmentX - allowance); int alignmentAreaRightX = Math.Min(image.Width - 1, estAlignmentX + allowance); if (alignmentAreaRightX - alignmentAreaLeftX < overallEstModuleSize * 3) { throw NotFoundException.NotFoundInstance; } int alignmentAreaTopY = Math.Max(0, estAlignmentY - allowance); int alignmentAreaBottomY = Math.Min(image.Height - 1, estAlignmentY + allowance); if (alignmentAreaBottomY - alignmentAreaTopY < overallEstModuleSize * 3) { throw NotFoundException.NotFoundInstance; } AlignmentPatternFinder alignmentFinder = new AlignmentPatternFinder(image, alignmentAreaLeftX, alignmentAreaTopY, alignmentAreaRightX - alignmentAreaLeftX, alignmentAreaBottomY - alignmentAreaTopY, overallEstModuleSize, resultPointCallback); return alignmentFinder.find(); } } }