/* * Copyright 2009 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Text; #if SILVERLIGHT4 || SILVERLIGHT5 || NET40 || NET45 || NETFX_CORE using System.Numerics; #else using BigIntegerLibrary; #endif using ZXing.Common; namespace ZXing.PDF417.Internal { /// ///

This class contains the methods for decoding the PDF417 codewords.

/// /// SITA Lab (kevin.osullivan@sita.aero) ///
internal static class DecodedBitStreamParser { private enum Mode { ALPHA, LOWER, MIXED, PUNCT, ALPHA_SHIFT, PUNCT_SHIFT } private const int TEXT_COMPACTION_MODE_LATCH = 900; private const int BYTE_COMPACTION_MODE_LATCH = 901; private const int NUMERIC_COMPACTION_MODE_LATCH = 902; private const int BYTE_COMPACTION_MODE_LATCH_6 = 924; private const int BEGIN_MACRO_PDF417_CONTROL_BLOCK = 928; private const int BEGIN_MACRO_PDF417_OPTIONAL_FIELD = 923; private const int MACRO_PDF417_TERMINATOR = 922; private const int MODE_SHIFT_TO_BYTE_COMPACTION_MODE = 913; private const int MAX_NUMERIC_CODEWORDS = 15; private const int PL = 25; private const int LL = 27; private const int AS = 27; private const int ML = 28; private const int AL = 28; private const int PS = 29; private const int PAL = 29; private static readonly char[] PUNCT_CHARS = { ';', '<', '>', '@', '[', '\\', '}', '_', '`', '~', '!', '\r', '\t', ',', ':', '\n', '-', '.', '$', '/', '"', '|', '*', '(', ')', '?', '{', '}', '\'' }; private static readonly char[] MIXED_CHARS = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '&', '\r', '\t', ',', ':', '#', '-', '.', '$', '/', '+', '%', '*', '=', '^' }; #if SILVERLIGHT4 || SILVERLIGHT5 || NET40 || NET45 || NETFX_CORE /// /// Table containing values for the exponent of 900. /// This is used in the numeric compaction decode algorithm. /// private static readonly BigInteger[] EXP900; static DecodedBitStreamParser() { EXP900 = new BigInteger[16]; EXP900[0] = BigInteger.One; BigInteger nineHundred = new BigInteger(900); EXP900[1] = nineHundred; for (int i = 2; i < EXP900.Length; i++) { EXP900[i] = BigInteger.Multiply(EXP900[i - 1], nineHundred); } } #else /// /// Table containing values for the exponent of 900. /// This is used in the numeric compaction decode algorithm. /// private static readonly BigInteger[] EXP900; static DecodedBitStreamParser() { EXP900 = new BigInteger[16]; EXP900[0] = BigInteger.One; BigInteger nineHundred = new BigInteger(900); EXP900[1] = nineHundred; for (int i = 2; i < EXP900.Length; i++) { EXP900[i] = BigInteger.Multiplication(EXP900[i - 1], nineHundred); } } #endif internal static DecoderResult Decode(int[] codewords) { StringBuilder result = new StringBuilder(100); // Get compaction mode int codeIndex = 1; int code = codewords[codeIndex++]; while (codeIndex < codewords[0]) { switch (code) { case TEXT_COMPACTION_MODE_LATCH: codeIndex = TextCompaction(codewords, codeIndex, result); break; case BYTE_COMPACTION_MODE_LATCH: codeIndex = ByteCompaction(code, codewords, codeIndex, result); break; case NUMERIC_COMPACTION_MODE_LATCH: codeIndex = NumericCompaction(codewords, codeIndex, result); break; case MODE_SHIFT_TO_BYTE_COMPACTION_MODE: codeIndex = ByteCompaction(code, codewords, codeIndex, result); break; case BYTE_COMPACTION_MODE_LATCH_6: codeIndex = ByteCompaction(code, codewords, codeIndex, result); break; default: // Default to text compaction. During testing numerous barcodes // appeared to be missing the starting mode. In these cases defaulting // to text compaction seems to work. codeIndex--; codeIndex = TextCompaction(codewords, codeIndex, result); break; } if (codeIndex < 0) return null; if (codeIndex < codewords.Length) { code = codewords[codeIndex++]; } else { return null; } } if (result.Length == 0) { return null; } return new DecoderResult(null, result.ToString(), null, null); } /// /// Text Compaction mode (see 5.4.1.5) permits all printable ASCII characters to be /// encoded, i.e. values 32 - 126 inclusive in accordance with ISO/IEC 646 (IRV), as /// well as selected control characters. /// /// The array of codewords (data + error) /// The current index into the codeword array. /// The decoded data is appended to the result. /// The next index into the codeword array. /// private static int TextCompaction(int[] codewords, int codeIndex, StringBuilder result) { // 2 character per codeword int[] textCompactionData = new int[codewords[0] << 1]; // Used to hold the byte compaction value if there is a mode shift int[] byteCompactionData = new int[codewords[0] << 1]; int index = 0; bool end = false; while ((codeIndex < codewords[0]) && !end) { int code = codewords[codeIndex++]; if (code < TEXT_COMPACTION_MODE_LATCH) { textCompactionData[index] = code / 30; textCompactionData[index + 1] = code % 30; index += 2; } else { switch (code) { case TEXT_COMPACTION_MODE_LATCH: // reinitialize text compaction mode to alpha sub mode textCompactionData[index++] = TEXT_COMPACTION_MODE_LATCH; break; case BYTE_COMPACTION_MODE_LATCH: codeIndex--; end = true; break; case NUMERIC_COMPACTION_MODE_LATCH: codeIndex--; end = true; break; case MODE_SHIFT_TO_BYTE_COMPACTION_MODE: // The Mode Shift codeword 913 shall cause a temporary // switch from Text Compaction mode to Byte Compaction mode. // This switch shall be in effect for only the next codeword, // after which the mode shall revert to the prevailing sub-mode // of the Text Compaction mode. Codeword 913 is only available // in Text Compaction mode; its use is described in 5.4.2.4. textCompactionData[index] = MODE_SHIFT_TO_BYTE_COMPACTION_MODE; code = codewords[codeIndex++]; byteCompactionData[index] = code; //Integer.toHexString(code); index++; break; case BYTE_COMPACTION_MODE_LATCH_6: codeIndex--; end = true; break; } } } DecodeTextCompaction(textCompactionData, byteCompactionData, index, result); return codeIndex; } /// /// The Text Compaction mode includes all the printable ASCII characters /// (i.e. values from 32 to 126) and three ASCII control characters: HT or tab /// (ASCII value 9), LF or line feed (ASCII value 10), and CR or carriage /// return (ASCII value 13). The Text Compaction mode also includes various latch /// and shift characters which are used exclusively within the mode. The Text /// Compaction mode encodes up to 2 characters per codeword. The compaction rules /// for converting data into PDF417 codewords are defined in 5.4.2.2. The sub-mode /// switches are defined in 5.4.2.3. /// /// The text compaction data. /// The byte compaction data if there /// was a mode shift. /// The size of the text compaction and byte compaction data. /// The decoded data is appended to the result. /// private static void DecodeTextCompaction(int[] textCompactionData, int[] byteCompactionData, int length, StringBuilder result) { // Beginning from an initial state of the Alpha sub-mode // The default compaction mode for PDF417 in effect at the start of each symbol shall always be Text // Compaction mode Alpha sub-mode (uppercase alphabetic). A latch codeword from another mode to the Text // Compaction mode shall always switch to the Text Compaction Alpha sub-mode. Mode subMode = Mode.ALPHA; Mode priorToShiftMode = Mode.ALPHA; int i = 0; while (i < length) { int subModeCh = textCompactionData[i]; char? ch = null; switch (subMode) { case Mode.ALPHA: // Alpha (uppercase alphabetic) if (subModeCh < 26) { // Upper case Alpha Character ch = (char)('A' + subModeCh); } else { if (subModeCh == 26) { ch = ' '; } else if (subModeCh == LL) { subMode = Mode.LOWER; } else if (subModeCh == ML) { subMode = Mode.MIXED; } else if (subModeCh == PS) { // Shift to punctuation priorToShiftMode = subMode; subMode = Mode.PUNCT_SHIFT; } else if (subModeCh == MODE_SHIFT_TO_BYTE_COMPACTION_MODE) { result.Append((char)byteCompactionData[i]); } else if (subModeCh == TEXT_COMPACTION_MODE_LATCH) { subMode = Mode.ALPHA; } } break; case Mode.LOWER: // Lower (lowercase alphabetic) if (subModeCh < 26) { ch = (char)('a' + subModeCh); } else { if (subModeCh == 26) { ch = ' '; } else if (subModeCh == AS) { // Shift to alpha priorToShiftMode = subMode; subMode = Mode.ALPHA_SHIFT; } else if (subModeCh == ML) { subMode = Mode.MIXED; } else if (subModeCh == PS) { // Shift to punctuation priorToShiftMode = subMode; subMode = Mode.PUNCT_SHIFT; } else if (subModeCh == MODE_SHIFT_TO_BYTE_COMPACTION_MODE) { result.Append((char)byteCompactionData[i]); } else if (subModeCh == TEXT_COMPACTION_MODE_LATCH) { subMode = Mode.ALPHA; } } break; case Mode.MIXED: // Mixed (numeric and some punctuation) if (subModeCh < PL) { ch = MIXED_CHARS[subModeCh]; } else { if (subModeCh == PL) { subMode = Mode.PUNCT; } else if (subModeCh == 26) { ch = ' '; } else if (subModeCh == LL) { subMode = Mode.LOWER; } else if (subModeCh == AL) { subMode = Mode.ALPHA; } else if (subModeCh == PS) { // Shift to punctuation priorToShiftMode = subMode; subMode = Mode.PUNCT_SHIFT; } else if (subModeCh == MODE_SHIFT_TO_BYTE_COMPACTION_MODE) { result.Append((char)byteCompactionData[i]); } else if (subModeCh == TEXT_COMPACTION_MODE_LATCH) { subMode = Mode.ALPHA; } } break; case Mode.PUNCT: // Punctuation if (subModeCh < PAL) { ch = PUNCT_CHARS[subModeCh]; } else { if (subModeCh == PAL) { subMode = Mode.ALPHA; } else if (subModeCh == MODE_SHIFT_TO_BYTE_COMPACTION_MODE) { result.Append((char)byteCompactionData[i]); } else if (subModeCh == TEXT_COMPACTION_MODE_LATCH) { subMode = Mode.ALPHA; } } break; case Mode.ALPHA_SHIFT: // Restore sub-mode subMode = priorToShiftMode; if (subModeCh < 26) { ch = (char)('A' + subModeCh); } else { if (subModeCh == 26) { ch = ' '; } else if (subModeCh == TEXT_COMPACTION_MODE_LATCH) { subMode = Mode.ALPHA; } } break; case Mode.PUNCT_SHIFT: // Restore sub-mode subMode = priorToShiftMode; if (subModeCh < PAL) { ch = PUNCT_CHARS[subModeCh]; } else { if (subModeCh == PAL) { subMode = Mode.ALPHA; } else if (subModeCh == MODE_SHIFT_TO_BYTE_COMPACTION_MODE) { // PS before Shift-to-Byte is used as a padding character, // see 5.4.2.4 of the specification result.Append((char)byteCompactionData[i]); } else if (subModeCh == TEXT_COMPACTION_MODE_LATCH) { subMode = Mode.ALPHA; } } break; } if (ch != null) { // Append decoded character to result result.Append(ch.Value); } i++; } } /// /// Byte Compaction mode (see 5.4.3) permits all 256 possible 8-bit byte values to be encoded. /// This includes all ASCII characters value 0 to 127 inclusive and provides for international /// character set support. /// /// The byte compaction mode i.e. 901 or 924 /// The array of codewords (data + error) /// The current index into the codeword array. /// The decoded data is appended to the result. /// The next index into the codeword array. /// private static int ByteCompaction(int mode, int[] codewords, int codeIndex, StringBuilder result) { if (mode == BYTE_COMPACTION_MODE_LATCH) { // Total number of Byte Compaction characters to be encoded // is not a multiple of 6 int count = 0; long value = 0; char[] decodedData = new char[6]; int[] byteCompactedCodewords = new int[6]; bool end = false; int nextCode = codewords[codeIndex++]; while ((codeIndex < codewords[0]) && !end) { byteCompactedCodewords[count++] = nextCode; // Base 900 value = 900 * value + nextCode; nextCode = codewords[codeIndex++]; // perhaps it should be ok to check only nextCode >= TEXT_COMPACTION_MODE_LATCH if (nextCode == TEXT_COMPACTION_MODE_LATCH || nextCode == BYTE_COMPACTION_MODE_LATCH || nextCode == NUMERIC_COMPACTION_MODE_LATCH || nextCode == BYTE_COMPACTION_MODE_LATCH_6 || nextCode == BEGIN_MACRO_PDF417_CONTROL_BLOCK || nextCode == BEGIN_MACRO_PDF417_OPTIONAL_FIELD || nextCode == MACRO_PDF417_TERMINATOR) { codeIndex--; end = true; } else { if ((count % 5 == 0) && (count > 0)) { // Decode every 5 codewords // Convert to Base 256 for (int j = 0; j < 6; ++j) { decodedData[5 - j] = (char)(value % 256); value >>= 8; } result.Append(decodedData); count = 0; } } } // if the end of all codewords is reached the last codeword needs to be added if (codeIndex == codewords[0] && nextCode < TEXT_COMPACTION_MODE_LATCH) byteCompactedCodewords[count++] = nextCode; // If Byte Compaction mode is invoked with codeword 901, // the last group of codewords is interpreted directly // as one byte per codeword, without compaction. for (int i = 0; i < count; i++) { result.Append((char)byteCompactedCodewords[i]); } } else if (mode == BYTE_COMPACTION_MODE_LATCH_6) { // Total number of Byte Compaction characters to be encoded // is an integer multiple of 6 int count = 0; long value = 0; bool end = false; while (codeIndex < codewords[0] && !end) { int code = codewords[codeIndex++]; if (code < TEXT_COMPACTION_MODE_LATCH) { count++; // Base 900 value = 900 * value + code; } else { if (code == TEXT_COMPACTION_MODE_LATCH || code == BYTE_COMPACTION_MODE_LATCH || code == NUMERIC_COMPACTION_MODE_LATCH || code == BYTE_COMPACTION_MODE_LATCH_6 || code == BEGIN_MACRO_PDF417_CONTROL_BLOCK || code == BEGIN_MACRO_PDF417_OPTIONAL_FIELD || code == MACRO_PDF417_TERMINATOR) { codeIndex--; end = true; } } if ((count % 5 == 0) && (count > 0)) { // Decode every 5 codewords // Convert to Base 256 char[] decodedData = new char[6]; for (int j = 0; j < 6; ++j) { decodedData[5 - j] = (char)(value & 0xFF); value >>= 8; } result.Append(decodedData); count = 0; } } } return codeIndex; } /// /// Numeric Compaction mode (see 5.4.4) permits efficient encoding of numeric data strings. /// /// The array of codewords (data + error) /// The current index into the codeword array. /// The decoded data is appended to the result. /// The next index into the codeword array. /// private static int NumericCompaction(int[] codewords, int codeIndex, StringBuilder result) { int count = 0; bool end = false; int[] numericCodewords = new int[MAX_NUMERIC_CODEWORDS]; while (codeIndex < codewords[0] && !end) { int code = codewords[codeIndex++]; if (codeIndex == codewords[0]) { end = true; } if (code < TEXT_COMPACTION_MODE_LATCH) { numericCodewords[count] = code; count++; } else { if (code == TEXT_COMPACTION_MODE_LATCH || code == BYTE_COMPACTION_MODE_LATCH || code == BYTE_COMPACTION_MODE_LATCH_6 || code == BEGIN_MACRO_PDF417_CONTROL_BLOCK || code == BEGIN_MACRO_PDF417_OPTIONAL_FIELD || code == MACRO_PDF417_TERMINATOR) { codeIndex--; end = true; } } if (count % MAX_NUMERIC_CODEWORDS == 0 || code == NUMERIC_COMPACTION_MODE_LATCH || end) { // Re-invoking Numeric Compaction mode (by using codeword 902 // while in Numeric Compaction mode) serves to terminate the // current Numeric Compaction mode grouping as described in 5.4.4.2, // and then to start a new one grouping. String s = DecodeBase900toBase10(numericCodewords, count); if (s == null) return -1; result.Append(s); count = 0; } } return codeIndex; } /// /// Convert a list of Numeric Compacted codewords from Base 900 to Base 10. /// EXAMPLE /// Encode the fifteen digit numeric string 000213298174000 /// Prefix the numeric string with a 1 and set the initial value of /// t = 1 000 213 298 174 000 /// Calculate codeword 0 /// d0 = 1 000 213 298 174 000 mod 900 = 200 /// /// t = 1 000 213 298 174 000 div 900 = 1 111 348 109 082 /// Calculate codeword 1 /// d1 = 1 111 348 109 082 mod 900 = 282 /// /// t = 1 111 348 109 082 div 900 = 1 234 831 232 /// Calculate codeword 2 /// d2 = 1 234 831 232 mod 900 = 632 /// /// t = 1 234 831 232 div 900 = 1 372 034 /// Calculate codeword 3 /// d3 = 1 372 034 mod 900 = 434 /// /// t = 1 372 034 div 900 = 1 524 /// Calculate codeword 4 /// d4 = 1 524 mod 900 = 624 /// /// t = 1 524 div 900 = 1 /// Calculate codeword 5 /// d5 = 1 mod 900 = 1 /// t = 1 div 900 = 0 /// Codeword sequence is: 1, 624, 434, 632, 282, 200 /// /// Decode the above codewords involves /// 1 x 900 power of 5 + 624 x 900 power of 4 + 434 x 900 power of 3 + /// 632 x 900 power of 2 + 282 x 900 power of 1 + 200 x 900 power of 0 = 1000213298174000 /// /// Remove leading 1 => Result is 000213298174000 /// The array of codewords /// The number of codewords /// The decoded string representing the Numeric data. /// private static String DecodeBase900toBase10(int[] codewords, int count) { #if SILVERLIGHT4 || SILVERLIGHT5 || NET40 || NET45 || NETFX_CORE BigInteger result = BigInteger.Zero; for (int i = 0; i < count; i++) { result = BigInteger.Add(result, BigInteger.Multiply(EXP900[count - i - 1], new BigInteger(codewords[i]))); } String resultString = result.ToString(); if (resultString[0] != '1') { return null; } return resultString.Substring(1); #else BigInteger result = BigInteger.Zero; for (int i = 0; i < count; i++) { result = BigInteger.Addition(result, BigInteger.Multiplication(EXP900[count - i - 1], new BigInteger(codewords[i]))); } String resultString = result.ToString(); if (resultString[0] != '1') { return null; } return resultString.Substring(1); #endif } } }