/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Text; namespace com.google.zxing.common.reedsolomon { ///

Represents a polynomial whose coefficients are elements of GF(256). /// Instances of this class are immutable.

/// ///

Much credit is due to William Rucklidge since portions of this code are an indirect /// port of his C++ Reed-Solomon implementation.

/// ///
/// srowen@google.com (Sean Owen) /// public sealed class GF256Poly { private GF256 field; private int[] coefficients; /** * @param field the {@link GF256} instance representing the field to use * to perform computations * @param coefficients coefficients as ints representing elements of GF(256), arranged * from most significant (highest-power term) coefficient to least significant * @throws ArgumentException if argument is null or empty, * or if leading coefficient is 0 and this is not a * constant polynomial (that is, it is not the monomial "0") */ public GF256Poly(GF256 field, int[] coefficients) { if (coefficients == null || coefficients.Length == 0) { throw new ArgumentException(); } this.field = field; int coefficientsLength = coefficients.Length; if (coefficientsLength > 1 && coefficients[0] == 0) { // Leading term must be non-zero for anything except the constant polynomial "0" int firstNonZero = 1; while (firstNonZero < coefficientsLength && coefficients[firstNonZero] == 0) { firstNonZero++; } if (firstNonZero == coefficientsLength) { this.coefficients = field.getZero().coefficients; } else { this.coefficients = new int[coefficientsLength - firstNonZero]; System.Array.Copy(coefficients,firstNonZero,this.coefficients,0,this.coefficients.Length); } } else { this.coefficients = coefficients; } } public int[] getCoefficients() { return coefficients; } /** * @return degree of this polynomial */ public int getDegree() { return coefficients.Length - 1; } /** * @return true iff this polynomial is the monomial "0" */ public bool isZero() { return coefficients[0] == 0; } /** * @return coefficient of x^degree term in this polynomial */ public int getCoefficient(int degree) { return coefficients[coefficients.Length - 1 - degree]; } /** * @return evaluation of this polynomial at a given point */ public int evaluateAt(int a) { if (a == 0) { // Just return the x^0 coefficient return getCoefficient(0); } int size = coefficients.Length; int result = 0; if (a == 1) { // Just the sum of the coefficients result = 0; for (int i = 0; i < size; i++) { result = GF256.addOrSubtract(result, coefficients[i]); } return result; } result = coefficients[0]; for (int i = 1; i < size; i++) { result = GF256.addOrSubtract(field.multiply(a, result), coefficients[i]); } return result; } public GF256Poly addOrSubtract(GF256Poly other) { if (!field.Equals(other.field)) { throw new ArgumentException("GF256Polys do not have same GF256 field"); } if (isZero()) { return other; } if (other.isZero()) { return this; } int[] smallerCoefficients = this.coefficients; int[] largerCoefficients = other.coefficients; if (smallerCoefficients.Length > largerCoefficients.Length) { int[] temp = smallerCoefficients; smallerCoefficients = largerCoefficients; largerCoefficients = temp; } int[] sumDiff = new int[largerCoefficients.Length]; int lengthDiff = largerCoefficients.Length - smallerCoefficients.Length; // Copy high-order terms only found in higher-degree polynomial's coefficients System.Array.Copy(largerCoefficients, 0, sumDiff, 0, lengthDiff); for (int i = lengthDiff; i < largerCoefficients.Length; i++) { sumDiff[i] = GF256.addOrSubtract(smallerCoefficients[i - lengthDiff], largerCoefficients[i]); } return new GF256Poly(field, sumDiff); } public GF256Poly multiply(GF256Poly other) { if (!field.Equals(other.field)) { throw new ArgumentException("GF256Polys do not have same GF256 field"); } if (isZero() || other.isZero()) { return field.getZero(); } int[] aCoefficients = this.coefficients; int aLength = aCoefficients.Length; int[] bCoefficients = other.coefficients; int bLength = bCoefficients.Length; int[] product = new int[aLength + bLength - 1]; for (int i = 0; i < aLength; i++) { int aCoeff = aCoefficients[i]; for (int j = 0; j < bLength; j++) { product[i + j] = GF256.addOrSubtract(product[i + j], field.multiply(aCoeff, bCoefficients[j])); } } return new GF256Poly(field, product); } public GF256Poly multiply(int scalar) { if (scalar == 0) { return field.getZero(); } if (scalar == 1) { return this; } int size = coefficients.Length; int[] product = new int[size]; for (int i = 0; i < size; i++) { product[i] = field.multiply(coefficients[i], scalar); } return new GF256Poly(field, product); } public GF256Poly multiplyByMonomial(int degree, int coefficient) { if (degree < 0) { throw new ArgumentException(); } if (coefficient == 0) { return field.getZero(); } int size = coefficients.Length; int[] product = new int[size + degree]; for (int i = 0; i < size; i++) { product[i] = field.multiply(coefficients[i], coefficient); } return new GF256Poly(field, product); } public GF256Poly[] divide(GF256Poly other) { if (!field.Equals(other.field)) { throw new ArgumentException("GF256Polys do not have same GF256 field"); } if (other.isZero()) { throw new ArgumentException("Divide by 0"); } GF256Poly quotient = field.getZero(); GF256Poly remainder = this; int denominatorLeadingTerm = other.getCoefficient(other.getDegree()); int inverseDenominatorLeadingTerm = field.inverse(denominatorLeadingTerm); while (remainder.getDegree() >= other.getDegree() && !remainder.isZero()) { int degreeDifference = remainder.getDegree() - other.getDegree(); int scale = field.multiply(remainder.getCoefficient(remainder.getDegree()), inverseDenominatorLeadingTerm); GF256Poly term = other.multiplyByMonomial(degreeDifference, scale); GF256Poly iterationQuotient = field.buildMonomial(degreeDifference, scale); quotient = quotient.addOrSubtract(iterationQuotient); remainder = remainder.addOrSubtract(term); } return new GF256Poly[] { quotient, remainder }; } public String toString() { StringBuilder result = new StringBuilder(8 * getDegree()); for (int degree = getDegree(); degree >= 0; degree--) { int coefficient = getCoefficient(degree); if (coefficient != 0) { if (coefficient < 0) { result.Append(" - "); coefficient = -coefficient; } else { if (result.Length > 0) { result.Append(" + "); } } if (degree == 0 || coefficient != 1) { int alphaPower = field.log(coefficient); if (alphaPower == 0) { result.Append('1'); } else if (alphaPower == 1) { result.Append('a'); } else { result.Append("a^"); result.Append(alphaPower); } } if (degree != 0) { if (degree == 1) { result.Append('x'); } else { result.Append("x^"); result.Append(degree); } } } } return result.ToString(); } } }