/* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using ReaderException = com.google.zxing.ReaderException; using BitSource = com.google.zxing.common.BitSource; using CharacterSetECI = com.google.zxing.common.CharacterSetECI; using DecoderResult = com.google.zxing.common.DecoderResult; namespace com.google.zxing.qrcode.decoder { ///

QR Codes can encode text as bits in one of several modes, and can use multiple modes /// in one QR Code. This class decodes the bits back into text.

/// ///

See ISO 18004:2006, 6.4.3 - 6.4.7

/// ///
/// Sean Owen /// /// www.Redivivus.in (suraj.supekar@redivivus.in) - Ported from ZXING Java Source /// sealed class DecodedBitStreamParser { /// See ISO 18004:2006, 6.4.4 Table 5 //UPGRADE_NOTE: Final was removed from the declaration of 'ALPHANUMERIC_CHARS'. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'" private static readonly char[] ALPHANUMERIC_CHARS = new char[]{'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', ' ', '$', '%', '*', '+', '-', '.', '/', ':'}; private const System.String SHIFT_JIS = "SJIS"; private const System.String EUC_JP = "EUC_JP"; private static bool ASSUME_SHIFT_JIS; private const System.String UTF8 = "UTF-8"; // Redivivus.in Java to c# Porting update // 30/01/2010 // Commented & Added private const System.String ISO88591 = "ISO-8859-1"; private DecodedBitStreamParser() { } internal static DecoderResult decode(sbyte[] bytes, Version version, ErrorCorrectionLevel ecLevel) { BitSource bits = new BitSource(bytes); System.Text.StringBuilder result = new System.Text.StringBuilder(50); CharacterSetECI currentCharacterSetECI = null; bool fc1InEffect = false; System.Collections.ArrayList byteSegments = System.Collections.ArrayList.Synchronized(new System.Collections.ArrayList(1)); Mode mode; do { // While still another segment to read... if (bits.available() < 4) { // OK, assume we're done. Really, a TERMINATOR mode should have been recorded here mode = Mode.TERMINATOR; } else { try { mode = Mode.forBits(bits.readBits(4)); // mode is encoded by 4 bits } catch (System.ArgumentException) { throw ReaderException.Instance; } } if (!mode.Equals(Mode.TERMINATOR)) { if (mode.Equals(Mode.FNC1_FIRST_POSITION) || mode.Equals(Mode.FNC1_SECOND_POSITION)) { // We do little with FNC1 except alter the parsed result a bit according to the spec fc1InEffect = true; } else if (mode.Equals(Mode.STRUCTURED_APPEND)) { // not really supported; all we do is ignore it // Read next 8 bits (symbol sequence #) and 8 bits (parity data), then continue bits.readBits(16); } else if (mode.Equals(Mode.ECI)) { // Count doesn't apply to ECI int value_Renamed = parseECIValue(bits); currentCharacterSetECI = CharacterSetECI.getCharacterSetECIByValue(value_Renamed); if (currentCharacterSetECI == null) { throw ReaderException.Instance; } } else { // How many characters will follow, encoded in this mode? int count = bits.readBits(mode.getCharacterCountBits(version)); if (mode.Equals(Mode.NUMERIC)) { decodeNumericSegment(bits, result, count); } else if (mode.Equals(Mode.ALPHANUMERIC)) { decodeAlphanumericSegment(bits, result, count, fc1InEffect); } else if (mode.Equals(Mode.BYTE)) { decodeByteSegment(bits, result, count, currentCharacterSetECI, byteSegments); } else if (mode.Equals(Mode.KANJI)) { decodeKanjiSegment(bits, result, count); } else { throw ReaderException.Instance; } } } } while (!mode.Equals(Mode.TERMINATOR)); return new DecoderResult(bytes, result.ToString(), (byteSegments.Count == 0)?null:byteSegments, ecLevel); } private static void decodeKanjiSegment(BitSource bits, System.Text.StringBuilder result, int count) { // Each character will require 2 bytes. Read the characters as 2-byte pairs // and decode as Shift_JIS afterwards sbyte[] buffer = new sbyte[2 * count]; int offset = 0; while (count > 0) { // Each 13 bits encodes a 2-byte character int twoBytes = bits.readBits(13); int assembledTwoBytes = ((twoBytes / 0x0C0) << 8) | (twoBytes % 0x0C0); if (assembledTwoBytes < 0x01F00) { // In the 0x8140 to 0x9FFC range assembledTwoBytes += 0x08140; } else { // In the 0xE040 to 0xEBBF range assembledTwoBytes += 0x0C140; } buffer[offset] = (sbyte) (assembledTwoBytes >> 8); buffer[offset + 1] = (sbyte) assembledTwoBytes; offset += 2; count--; } // Shift_JIS may not be supported in some environments: try { //UPGRADE_TODO: The differences in the Format of parameters for constructor 'java.lang.String.String' may cause compilation errors. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1092'" result.Append(System.Text.Encoding.GetEncoding(SHIFT_JIS).GetString(SupportClass.ToByteArray(buffer))); } catch (System.IO.IOException) { throw ReaderException.Instance; } } private static void decodeByteSegment(BitSource bits, System.Text.StringBuilder result, int count, CharacterSetECI currentCharacterSetECI, System.Collections.ArrayList byteSegments) { sbyte[] readBytes = new sbyte[count]; if (count << 3 > bits.available()) { throw ReaderException.Instance; } for (int i = 0; i < count; i++) { readBytes[i] = (sbyte) bits.readBits(8); } System.String encoding; if (currentCharacterSetECI == null) { // The spec isn't clear on this mode; see // section 6.4.5: t does not say which encoding to assuming // upon decoding. I have seen ISO-8859-1 used as well as // Shift_JIS -- without anything like an ECI designator to // give a hint. encoding = guessEncoding(readBytes); } else { encoding = currentCharacterSetECI.EncodingName; } try { //UPGRADE_TODO: The differences in the Format of parameters for constructor 'java.lang.String.String' may cause compilation errors. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1092'" result.Append(System.Text.Encoding.GetEncoding(encoding).GetString(SupportClass.ToByteArray(readBytes))); } catch (System.IO.IOException) { throw ReaderException.Instance; } byteSegments.Add(SupportClass.ToByteArray(readBytes)); } private static void decodeAlphanumericSegment(BitSource bits, System.Text.StringBuilder result, int count, bool fc1InEffect) { // Read two characters at a time int start = result.Length; while (count > 1) { int nextTwoCharsBits = bits.readBits(11); result.Append(ALPHANUMERIC_CHARS[nextTwoCharsBits / 45]); result.Append(ALPHANUMERIC_CHARS[nextTwoCharsBits % 45]); count -= 2; } if (count == 1) { // special case: one character left result.Append(ALPHANUMERIC_CHARS[bits.readBits(6)]); } // See section 6.4.8.1, 6.4.8.2 if (fc1InEffect) { // We need to massage the result a bit if in an FNC1 mode: for (int i = start; i < result.Length; i++) { if (result[i] == '%') { if (i < result.Length - 1 && result[i + 1] == '%') { // %% is rendered as % result.Remove(i + 1, 1); } else { // In alpha mode, % should be converted to FNC1 separator 0x1D result[i] = (char) 0x1D; } } } } } private static void decodeNumericSegment(BitSource bits, System.Text.StringBuilder result, int count) { // Read three digits at a time while (count >= 3) { // Each 10 bits encodes three digits int threeDigitsBits = bits.readBits(10); if (threeDigitsBits >= 1000) { throw ReaderException.Instance; } result.Append(ALPHANUMERIC_CHARS[threeDigitsBits / 100]); result.Append(ALPHANUMERIC_CHARS[(threeDigitsBits / 10) % 10]); result.Append(ALPHANUMERIC_CHARS[threeDigitsBits % 10]); count -= 3; } if (count == 2) { // Two digits left over to read, encoded in 7 bits int twoDigitsBits = bits.readBits(7); if (twoDigitsBits >= 100) { throw ReaderException.Instance; } result.Append(ALPHANUMERIC_CHARS[twoDigitsBits / 10]); result.Append(ALPHANUMERIC_CHARS[twoDigitsBits % 10]); } else if (count == 1) { // One digit left over to read int digitBits = bits.readBits(4); if (digitBits >= 10) { throw ReaderException.Instance; } result.Append(ALPHANUMERIC_CHARS[digitBits]); } } private static System.String guessEncoding(sbyte[] bytes) { if (ASSUME_SHIFT_JIS) { return SHIFT_JIS; } // Does it start with the UTF-8 byte order mark? then guess it's UTF-8 if (bytes.Length > 3 && bytes[0] == (sbyte) SupportClass.Identity(0xEF) && bytes[1] == (sbyte) SupportClass.Identity(0xBB) && bytes[2] == (sbyte) SupportClass.Identity(0xBF)) { return UTF8; } // For now, merely tries to distinguish ISO-8859-1, UTF-8 and Shift_JIS, // which should be by far the most common encodings. ISO-8859-1 // should not have bytes in the 0x80 - 0x9F range, while Shift_JIS // uses this as a first byte of a two-byte character. If we see this // followed by a valid second byte in Shift_JIS, assume it is Shift_JIS. // If we see something else in that second byte, we'll make the risky guess // that it's UTF-8. int length = bytes.Length; bool canBeISO88591 = true; bool canBeShiftJIS = true; int maybeDoubleByteCount = 0; int maybeSingleByteKatakanaCount = 0; bool sawLatin1Supplement = false; bool lastWasPossibleDoubleByteStart = false; for (int i = 0; i < length && (canBeISO88591 || canBeShiftJIS); i++) { int value_Renamed = bytes[i] & 0xFF; if ((value_Renamed == 0xC2 || value_Renamed == 0xC3) && i < length - 1) { // This is really a poor hack. The slightly more exotic characters people might want to put in // a QR Code, by which I mean the Latin-1 supplement characters (e.g. u-umlaut) have encodings // that start with 0xC2 followed by [0xA0,0xBF], or start with 0xC3 followed by [0x80,0xBF]. int nextValue = bytes[i + 1] & 0xFF; if (nextValue <= 0xBF && ((value_Renamed == 0xC2 && nextValue >= 0xA0) || (value_Renamed == 0xC3 && nextValue >= 0x80))) { sawLatin1Supplement = true; } } if (value_Renamed >= 0x7F && value_Renamed <= 0x9F) { canBeISO88591 = false; } if (value_Renamed >= 0xA1 && value_Renamed <= 0xDF) { // count the number of characters that might be a Shift_JIS single-byte Katakana character if (!lastWasPossibleDoubleByteStart) { maybeSingleByteKatakanaCount++; } } if (!lastWasPossibleDoubleByteStart && ((value_Renamed >= 0xF0 && value_Renamed <= 0xFF) || value_Renamed == 0x80 || value_Renamed == 0xA0)) { canBeShiftJIS = false; } if (((value_Renamed >= 0x81 && value_Renamed <= 0x9F) || (value_Renamed >= 0xE0 && value_Renamed <= 0xEF))) { // These start double-byte characters in Shift_JIS. Let's see if it's followed by a valid // second byte. if (lastWasPossibleDoubleByteStart) { // If we just checked this and the last byte for being a valid double-byte // char, don't check starting on this byte. If this and the last byte // formed a valid pair, then this shouldn't be checked to see if it starts // a double byte pair of course. lastWasPossibleDoubleByteStart = false; } else { // ... otherwise do check to see if this plus the next byte form a valid // double byte pair encoding a character. lastWasPossibleDoubleByteStart = true; if (i >= bytes.Length - 1) { canBeShiftJIS = false; } else { int nextValue = bytes[i + 1] & 0xFF; if (nextValue < 0x40 || nextValue > 0xFC) { canBeShiftJIS = false; } else { maybeDoubleByteCount++; } // There is some conflicting information out there about which bytes can follow which in // double-byte Shift_JIS characters. The rule above seems to be the one that matches practice. } } } else { lastWasPossibleDoubleByteStart = false; } } // Distinguishing Shift_JIS and ISO-8859-1 can be a little tough. The crude heuristic is: // - If we saw // - at least three byte that starts a double-byte value (bytes that are rare in ISO-8859-1), or // - over 5% of bytes that could be single-byte Katakana (also rare in ISO-8859-1), // - and, saw no sequences that are invalid in Shift_JIS, then we conclude Shift_JIS if (canBeShiftJIS && (maybeDoubleByteCount >= 3 || 20 * maybeSingleByteKatakanaCount > length)) { return SHIFT_JIS; } // Otherwise, we default to ISO-8859-1 unless we know it can't be if (!sawLatin1Supplement && canBeISO88591) { return ISO88591; } // Otherwise, we take a wild guess with UTF-8 return UTF8; } private static int parseECIValue(BitSource bits) { int firstByte = bits.readBits(8); if ((firstByte & 0x80) == 0) { // just one byte return firstByte & 0x7F; } else if ((firstByte & 0xC0) == 0x80) { // two bytes int secondByte = bits.readBits(8); return ((firstByte & 0x3F) << 8) | secondByte; } else if ((firstByte & 0xE0) == 0xC0) { // three bytes int secondThirdBytes = bits.readBits(16); return ((firstByte & 0x1F) << 16) | secondThirdBytes; } throw new System.ArgumentException("Bad ECI bits starting with byte " + firstByte); } static DecodedBitStreamParser() { { // Redivivus.in Java to c# Porting update // 30/01/2010 // Commented & Added //System.String platformDefault = System_Renamed.getProperty("file.encoding"); //ASSUME_SHIFT_JIS = SHIFT_JIS.ToUpper().Equals(platformDefault.ToUpper()) || EUC_JP.ToUpper().Equals(platformDefault.ToUpper()); ASSUME_SHIFT_JIS = false; } } } }