mirror of
https://github.com/zxing/zxing.git
synced 2025-02-02 05:41:08 -08:00
git-svn-id: https://zxing.googlecode.com/svn/trunk@817 59b500cc-1b3d-0410-9834-0bbf25fbcc57
195 lines
8.1 KiB
C#
Executable file
195 lines
8.1 KiB
C#
Executable file
/*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
using System;
|
|
namespace com.google.zxing.common.reedsolomon
|
|
{
|
|
|
|
/// <summary> <p>Implements Reed-Solomon decoding, as the name implies.</p>
|
|
///
|
|
/// <p>The algorithm will not be explained here, but the following references were helpful
|
|
/// in creating this implementation:</p>
|
|
///
|
|
/// <ul>
|
|
/// <li>Bruce Maggs.
|
|
/// <a href="http://www.cs.cmu.edu/afs/cs.cmu.edu/project/pscico-guyb/realworld/www/rs_decode.ps">
|
|
/// "Decoding Reed-Solomon Codes"</a> (see discussion of Forney's Formula)</li>
|
|
/// <li>J.I. Hall. <a href="www.mth.msu.edu/~jhall/classes/codenotes/GRS.pdf">
|
|
/// "Chapter 5. Generalized Reed-Solomon Codes"</a>
|
|
/// (see discussion of Euclidean algorithm)</li>
|
|
/// </ul>
|
|
///
|
|
/// <p>Much credit is due to William Rucklidge since portions of this code are an indirect
|
|
/// port of his C++ Reed-Solomon implementation.</p>
|
|
///
|
|
/// </summary>
|
|
/// <author> srowen@google.com (Sean Owen)
|
|
/// </author>
|
|
/// <author> William Rucklidge
|
|
/// </author>
|
|
public sealed class ReedSolomonDecoder
|
|
{
|
|
private GF256 field;
|
|
|
|
public ReedSolomonDecoder(GF256 field) {
|
|
this.field = field;
|
|
}
|
|
|
|
/**
|
|
* <p>Decodes given set of received codewords, which include both data and error-correction
|
|
* codewords. Really, this means it uses Reed-Solomon to detect and correct errors, in-place,
|
|
* in the input.</p>
|
|
*
|
|
* @param received data and error-correction codewords
|
|
* @param twoS number of error-correction codewords available
|
|
* @throws ReedSolomonException if decoding fails for any reason
|
|
*/
|
|
public void decode(int[] received, int twoS) {
|
|
try{
|
|
|
|
|
|
GF256Poly poly = new GF256Poly(field, received);
|
|
int[] syndromeCoefficients = new int[twoS];
|
|
bool dataMatrix = field.Equals(GF256.DATA_MATRIX_FIELD);
|
|
bool noError = true;
|
|
for (int i = 0; i < twoS; i++) {
|
|
// Thanks to sanfordsquires for this fix:
|
|
int eval = poly.evaluateAt(field.exp(dataMatrix ? i + 1 : i));
|
|
syndromeCoefficients[syndromeCoefficients.Length - 1 - i] = eval;
|
|
if (eval != 0) {
|
|
noError = false;
|
|
}
|
|
}
|
|
if (noError) {
|
|
return;
|
|
}
|
|
GF256Poly syndrome = new GF256Poly(field, syndromeCoefficients);
|
|
GF256Poly[] sigmaOmega =
|
|
runEuclideanAlgorithm(field.buildMonomial(twoS, 1), syndrome, twoS);
|
|
GF256Poly sigma = sigmaOmega[0];
|
|
GF256Poly omega = sigmaOmega[1];
|
|
int[] errorLocations = findErrorLocations(sigma);
|
|
int[] errorMagnitudes = findErrorMagnitudes(omega, errorLocations, dataMatrix);
|
|
for (int i = 0; i < errorLocations.Length; i++) {
|
|
int position = received.Length - 1 - field.log(errorLocations[i]);
|
|
if (position < 0) {
|
|
throw new ReedSolomonException("Bad error location");
|
|
}
|
|
received[position] = GF256.addOrSubtract(received[position], errorMagnitudes[i]);
|
|
}
|
|
}catch(ReedSolomonException e){
|
|
throw new ReedSolomonException(e.Message);
|
|
}
|
|
}
|
|
|
|
private GF256Poly[] runEuclideanAlgorithm(GF256Poly a, GF256Poly b, int R){
|
|
// Assume a's degree is >= b's
|
|
if (a.getDegree() < b.getDegree()) {
|
|
GF256Poly temp = a;
|
|
a = b;
|
|
b = temp;
|
|
}
|
|
|
|
GF256Poly rLast = a;
|
|
GF256Poly r = b;
|
|
GF256Poly sLast = field.getOne();
|
|
GF256Poly s = field.getZero();
|
|
GF256Poly tLast = field.getZero();
|
|
GF256Poly t = field.getOne();
|
|
|
|
// Run Euclidean algorithm until r's degree is less than R/2
|
|
while (r.getDegree() >= R / 2) {
|
|
GF256Poly rLastLast = rLast;
|
|
GF256Poly sLastLast = sLast;
|
|
GF256Poly tLastLast = tLast;
|
|
rLast = r;
|
|
sLast = s;
|
|
tLast = t;
|
|
|
|
// Divide rLastLast by rLast, with quotient in q and remainder in r
|
|
if (rLast.isZero()) {
|
|
// Oops, Euclidean algorithm already terminated?
|
|
throw new ReedSolomonException("r_{i-1} was zero");
|
|
}
|
|
r = rLastLast;
|
|
GF256Poly q = field.getZero();
|
|
int denominatorLeadingTerm = rLast.getCoefficient(rLast.getDegree());
|
|
int dltInverse = field.inverse(denominatorLeadingTerm);
|
|
while (r.getDegree() >= rLast.getDegree() && !r.isZero()) {
|
|
int degreeDiff = r.getDegree() - rLast.getDegree();
|
|
int scale = field.multiply(r.getCoefficient(r.getDegree()), dltInverse);
|
|
q = q.addOrSubtract(field.buildMonomial(degreeDiff, scale));
|
|
r = r.addOrSubtract(rLast.multiplyByMonomial(degreeDiff, scale));
|
|
}
|
|
|
|
s = q.multiply(sLast).addOrSubtract(sLastLast);
|
|
t = q.multiply(tLast).addOrSubtract(tLastLast);
|
|
}
|
|
|
|
int sigmaTildeAtZero = t.getCoefficient(0);
|
|
if (sigmaTildeAtZero == 0) {
|
|
throw new ReedSolomonException("sigmaTilde(0) was zero");
|
|
}
|
|
|
|
int inverse = field.inverse(sigmaTildeAtZero);
|
|
GF256Poly sigma = t.multiply(inverse);
|
|
GF256Poly omega = r.multiply(inverse);
|
|
return new GF256Poly[]{sigma, omega};
|
|
}
|
|
|
|
private int[] findErrorLocations(GF256Poly errorLocator){
|
|
// This is a direct application of Chien's search
|
|
int numErrors = errorLocator.getDegree();
|
|
if (numErrors == 1) { // shortcut
|
|
return new int[] { errorLocator.getCoefficient(1) };
|
|
}
|
|
int[] result = new int[numErrors];
|
|
int e = 0;
|
|
for (int i = 1; i < 256 && e < numErrors; i++) {
|
|
if (errorLocator.evaluateAt(i) == 0) {
|
|
result[e] = field.inverse(i);
|
|
e++;
|
|
}
|
|
}
|
|
if (e != numErrors) {
|
|
throw new ReedSolomonException("Error locator degree does not match number of roots");
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private int[] findErrorMagnitudes(GF256Poly errorEvaluator, int[] errorLocations, bool dataMatrix) {
|
|
// This is directly applying Forney's Formula
|
|
int s = errorLocations.Length;
|
|
int[] result = new int[s];
|
|
for (int i = 0; i < s; i++) {
|
|
int xiInverse = field.inverse(errorLocations[i]);
|
|
int denominator = 1;
|
|
for (int j = 0; j < s; j++) {
|
|
if (i != j) {
|
|
denominator = field.multiply(denominator,
|
|
GF256.addOrSubtract(1, field.multiply(errorLocations[j], xiInverse)));
|
|
}
|
|
}
|
|
result[i] = field.multiply(errorEvaluator.evaluateAt(xiInverse),
|
|
field.inverse(denominator));
|
|
// Thanks to sanfordsquires for this fix:
|
|
if (dataMatrix) {
|
|
result[i] = field.multiply(result[i], xiInverse);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
}
|
|
} |