zxing/csharp/datamatrix/decoder/DecodedBitStreamParser.cs
mfzpeyo 1c4f85ee24 C# port, add datamatrix code
git-svn-id: https://zxing.googlecode.com/svn/trunk@820 59b500cc-1b3d-0410-9834-0bbf25fbcc57
2009-01-10 12:21:17 +00:00

450 lines
18 KiB
C#

/*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using com.google.zxing.common;
namespace com.google.zxing.datamatrix.decoder
{
/**
* <p>Encapsulates a block of data within a Data Matrix Code. Data Matrix Codes may split their data into
* multiple blocks, each of which is a unit of data and error-correction codewords. Each
* is represented by an instance of this class.</p>
*
* @author bbrown@google.com (Brian Brown)
*/
public sealed class DecodedBitStreamParser
{
/**
* See ISO 16022:2006, Annex C Table C.1
* The C40 Basic Character Set (*'s used for placeholders for the shift values)
*/
private static char[] C40_BASIC_SET_CHARS = {
'*', '*', '*', ' ', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N',
'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'
};
private static char[] C40_SHIFT2_SET_CHARS = {
'!', '"', '#', '$', '%', '&', '\'', '(', ')', '*', '+', ',', '-', '.',
'/', ':', ';', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_'
};
/**
* See ISO 16022:2006, Annex C Table C.2
* The Text Basic Character Set (*'s used for placeholders for the shift values)
*/
private static char[] TEXT_BASIC_SET_CHARS = {
'*', '*', '*', ' ', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'
};
private static char[] TEXT_SHIFT3_SET_CHARS = {
'\'', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N',
'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '{', '|', '}', '~', (char) 127
};
private const int PAD_ENCODE = 0; // Not really an encoding
private const int ASCII_ENCODE = 1;
private const int C40_ENCODE = 2;
private const int TEXT_ENCODE = 3;
private const int ANSIX12_ENCODE = 4;
private const int EDIFACT_ENCODE = 5;
private const int BASE256_ENCODE = 6;
private DecodedBitStreamParser() {
}
public static DecoderResult decode(sbyte[] bytes) {
BitSource bits = new BitSource(bytes);
StringBuilder result = new StringBuilder();
StringBuilder resultTrailer = new StringBuilder(0);
System.Collections.ArrayList byteSegments = new System.Collections.ArrayList(1);
int mode = ASCII_ENCODE;
do {
if (mode == ASCII_ENCODE) {
mode = decodeAsciiSegment(bits, result, resultTrailer);
} else {
switch (mode) {
case C40_ENCODE:
decodeC40Segment(bits, result);
break;
case TEXT_ENCODE:
decodeTextSegment(bits, result);
break;
case ANSIX12_ENCODE:
decodeAnsiX12Segment(bits, result);
break;
case EDIFACT_ENCODE:
decodeEdifactSegment(bits, result);
break;
case BASE256_ENCODE:
decodeBase256Segment(bits, result, byteSegments);
break;
default:
throw new ReaderException();
}
mode = ASCII_ENCODE;
}
} while (mode != PAD_ENCODE && bits.available() > 0);
if (resultTrailer.Length > 0) {
result.Append(resultTrailer);
}
return new DecoderResult(bytes, result.ToString(), int.Equals(byteSegments.Count,0) ? null : byteSegments);
}
/**
* See ISO 16022:2006, 5.2.3 and Annex C, Table C.2
*/
private static int decodeAsciiSegment(BitSource bits, StringBuilder result, StringBuilder resultTrailer)
{
bool upperShift = false;
do {
int oneByte = bits.readBits(8);
if (oneByte == 0) {
throw new ReaderException();
} else if (oneByte <= 128) { // ASCII data (ASCII value + 1)
oneByte = upperShift ? (oneByte + 128) : oneByte;
upperShift = false;
result.Append((char) (oneByte - 1));
return ASCII_ENCODE;
} else if (oneByte == 129) { // Pad
return PAD_ENCODE;
} else if (oneByte <= 229) { // 2-digit data 00-99 (Numeric Value + 130)
int value = oneByte - 130;
if (value < 10) { // padd with '0' for single digit values
result.Append('0');
}
result.Append(value);
} else if (oneByte == 230) { // Latch to C40 encodation
return C40_ENCODE;
} else if (oneByte == 231) { // Latch to Base 256 encodation
return BASE256_ENCODE;
} else if (oneByte == 232) { // FNC1
throw new ReaderException();
} else if (oneByte == 233) { // Structured Append
throw new ReaderException();
} else if (oneByte == 234) { // Reader Programming
throw new ReaderException();
} else if (oneByte == 235) { // Upper Shift (shift to Extended ASCII)
upperShift = true;
} else if (oneByte == 236) { // 05 Macro
result.Append("[)>\u001E05\u001D");
resultTrailer.Insert(0, "\u001E\u0004");
} else if (oneByte == 237) { // 06 Macro
result.Append("[)>\u001E06\u001D");
resultTrailer.Insert(0, "\u001E\u0004");
} else if (oneByte == 238) { // Latch to ANSI X12 encodation
return ANSIX12_ENCODE;
} else if (oneByte == 239) { // Latch to Text encodation
return TEXT_ENCODE;
} else if (oneByte == 240) { // Latch to EDIFACT encodation
return EDIFACT_ENCODE;
} else if (oneByte == 241) { // ECI Character
// TODO(bbrown): I think we need to support ECI
throw new ReaderException();
} else if (oneByte >= 242) { // Not to be used in ASCII encodation
throw new ReaderException();
}
} while (bits.available() > 0);
return ASCII_ENCODE;
}
/**
* See ISO 16022:2006, 5.2.5 and Annex C, Table C.1
*/
private static void decodeC40Segment(BitSource bits, StringBuilder result) {
// Three C40 values are encoded in a 16-bit value as
// (1600 * C1) + (40 * C2) + C3 + 1
// TODO(bbrown): The Upper Shift with C40 doesn't work in the 4 value scenario all the time
bool upperShift = false;
int[] cValues = new int[3];
do {
// If there is only one byte left then it will be encoded as ASCII
if (bits.available() == 8) {
return;
}
int firstByte = bits.readBits(8);
if (firstByte == 254) { // Unlatch codeword
return;
}
parseTwoBytes(firstByte, bits.readBits(8), cValues);
int shift = 0;
for (int i = 0; i < 3; i++) {
int cValue = cValues[i];
switch (shift) {
case 0:
if (cValue < 3) {
shift = cValue + 1;
} else {
if (upperShift) {
result.Append((char) (C40_BASIC_SET_CHARS[cValue] + 128));
upperShift = false;
} else {
result.Append(C40_BASIC_SET_CHARS[cValue]);
}
}
break;
case 1:
if (upperShift) {
result.Append((char) (cValue + 128));
upperShift = false;
} else {
result.Append(cValue);
}
shift = 0;
break;
case 2:
if (cValue < 27) {
if (upperShift) {
result.Append((char) (C40_SHIFT2_SET_CHARS[cValue] + 128));
upperShift = false;
} else {
result.Append(C40_SHIFT2_SET_CHARS[cValue]);
}
} else if (cValue == 27) { // FNC1
throw new ReaderException();
} else if (cValue == 30) { // Upper Shift
upperShift = true;
} else {
throw new ReaderException();
}
shift = 0;
break;
case 3:
if (upperShift) {
result.Append((char) (cValue + 224));
upperShift = false;
} else {
result.Append((char) (cValue + 96));
}
shift = 0;
break;
default:
throw new ReaderException();
}
}
} while (bits.available() > 0);
}
/**
* See ISO 16022:2006, 5.2.6 and Annex C, Table C.2
*/
private static void decodeTextSegment(BitSource bits, StringBuilder result) {
// Three Text values are encoded in a 16-bit value as
// (1600 * C1) + (40 * C2) + C3 + 1
// TODO(bbrown): The Upper Shift with Text doesn't work in the 4 value scenario all the time
bool upperShift = false;
int[] cValues = new int[3];
do {
// If there is only one byte left then it will be encoded as ASCII
if (bits.available() == 8) {
return;
}
int firstByte = bits.readBits(8);
if (firstByte == 254) { // Unlatch codeword
return;
}
parseTwoBytes(firstByte, bits.readBits(8), cValues);
int shift = 0;
for (int i = 0; i < 3; i++) {
int cValue = cValues[i];
switch (shift) {
case 0:
if (cValue < 3) {
shift = cValue + 1;
} else {
if (upperShift) {
result.Append((char) (TEXT_BASIC_SET_CHARS[cValue] + 128));
upperShift = false;
} else {
result.Append(TEXT_BASIC_SET_CHARS[cValue]);
}
}
break;
case 1:
if (upperShift) {
result.Append((char) (cValue + 128));
upperShift = false;
} else {
result.Append(cValue);
}
shift = 0;
break;
case 2:
// Shift 2 for Text is the same encoding as C40
if (cValue < 27) {
if (upperShift) {
result.Append((char) (C40_SHIFT2_SET_CHARS[cValue] + 128));
upperShift = false;
} else {
result.Append(C40_SHIFT2_SET_CHARS[cValue]);
}
} else if (cValue == 27) { // FNC1
throw new ReaderException();
} else if (cValue == 30) { // Upper Shift
upperShift = true;
} else {
throw new ReaderException();
}
shift = 0;
break;
case 3:
if (upperShift) {
result.Append((char) (TEXT_SHIFT3_SET_CHARS[cValue] + 128));
upperShift = false;
} else {
result.Append(TEXT_SHIFT3_SET_CHARS[cValue]);
}
shift = 0;
break;
default:
throw new ReaderException();
}
}
} while (bits.available() > 0);
}
/**
* See ISO 16022:2006, 5.2.7
*/
private static void decodeAnsiX12Segment(BitSource bits, StringBuilder result) {
// Three ANSI X12 values are encoded in a 16-bit value as
// (1600 * C1) + (40 * C2) + C3 + 1
int[] cValues = new int[3];
do {
// If there is only one byte left then it will be encoded as ASCII
if (bits.available() == 8) {
return;
}
int firstByte = bits.readBits(8);
if (firstByte == 254) { // Unlatch codeword
return;
}
parseTwoBytes(firstByte, bits.readBits(8), cValues);
for (int i = 0; i < 3; i++) {
int cValue = cValues[i];
if (cValue == 0) { // X12 segment terminator <CR>
result.Append('\r');
} else if (cValue == 1) { // X12 segment separator *
result.Append('*');
} else if (cValue == 2) { // X12 sub-element separator >
result.Append('>');
} else if (cValue == 3) { // space
result.Append(' ');
} else if (cValue < 14) { // 0 - 9
result.Append((char) (cValue + 44));
} else if (cValue < 40) { // A - Z
result.Append((char) (cValue + 51));
} else {
throw new ReaderException();
}
}
} while (bits.available() > 0);
}
private static void parseTwoBytes(int firstByte, int secondByte, int[] result) {
int fullBitValue = (firstByte << 8) + secondByte - 1;
int temp = fullBitValue / 1600;
result[0] = temp;
fullBitValue -= temp * 1600;
temp = fullBitValue / 40;
result[1] = temp;
result[2] = fullBitValue - temp * 40;
}
/**
* See ISO 16022:2006, 5.2.8 and Annex C Table C.3
*/
private static void decodeEdifactSegment(BitSource bits, StringBuilder result) {
bool unlatch = false;
do {
// If there is only two or less bytes left then it will be encoded as ASCII
if (bits.available() <= 16) {
return;
}
for (int i = 0; i < 4; i++) {
int edifactValue = bits.readBits(6);
// Check for the unlatch character
if (edifactValue == 0x2B67) { // 011111
unlatch = true;
// If we encounter the unlatch code then continue reading because the Codeword triple
// is padded with 0's
}
if (!unlatch) {
if ((edifactValue & 32) == 0) { // no 1 in the leading (6th) bit
edifactValue |= 64; // Add a leading 01 to the 6 bit binary value
}
result.Append(edifactValue);
}
}
} while (!unlatch && bits.available() > 0);
}
/**
* See ISO 16022:2006, 5.2.9 and Annex B, B.2
*/
private static void decodeBase256Segment(BitSource bits, StringBuilder result, System.Collections.ArrayList byteSegments) {
// Figure out how long the Base 256 Segment is.
int d1 = bits.readBits(8);
int count;
if (d1 == 0) { // Read the remainder of the symbol
count = bits.available() / 8;
} else if (d1 < 250) {
count = d1;
} else {
count = 250 * (d1 - 249) + bits.readBits(8);
}
byte[] bytes = new byte[count];
for (int i = 0; i < count; i++) {
bytes[i] = unrandomize255State(bits.readBits(8), i);
}
byteSegments.Add(bytes);
try {
result.Append(System.Text.Encoding.GetEncoding("iso-8859-1").GetString(bytes));
} catch (Exception uee) {
throw new Exception("Platform does not support required encoding: " + uee);
}
}
/**
* See ISO 16022:2006, Annex B, B.2
*/
private static byte unrandomize255State(int randomizedBase256Codeword,
int base256CodewordPosition) {
int pseudoRandomNumber = ((149 * base256CodewordPosition) % 255) + 1;
int tempVariable = randomizedBase256Codeword - pseudoRandomNumber;
return (byte) (tempVariable >= 0 ? tempVariable : (tempVariable + 256));
}
}
}