mirror of
https://github.com/zxing/zxing.git
synced 2025-01-14 20:57:40 -08:00
57afc8d154
git-svn-id: https://zxing.googlecode.com/svn/trunk@819 59b500cc-1b3d-0410-9834-0bbf25fbcc57
527 lines
23 KiB
C#
Executable file
527 lines
23 KiB
C#
Executable file
/*
|
|
* Copyright 2007 ZXing authors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
namespace com.google.zxing.qrcode.detector
|
|
{
|
|
using System;
|
|
using com.google.zxing;
|
|
using com.google.zxing.common;
|
|
|
|
public sealed class FinderPatternFinder
|
|
{
|
|
private static int CENTER_QUORUM = 2;
|
|
private static int MIN_SKIP = 3; // 1 pixel/module times 3 modules/center
|
|
private static int MAX_MODULES = 57; // support up to version 10 for mobile clients
|
|
private static int INTEGER_MATH_SHIFT = 8;
|
|
|
|
private MonochromeBitmapSource image;
|
|
private System.Collections.ArrayList possibleCenters;
|
|
private bool hasSkipped;
|
|
private int[] crossCheckStateCount;
|
|
|
|
/**
|
|
* <p>Creates a finder that will search the image for three finder patterns.</p>
|
|
*
|
|
* @param image image to search
|
|
*/
|
|
public FinderPatternFinder(MonochromeBitmapSource image) {
|
|
this.image = image;
|
|
this.possibleCenters = new System.Collections.ArrayList();
|
|
this.crossCheckStateCount = new int[5];
|
|
}
|
|
|
|
public FinderPatternInfo find(System.Collections.Hashtable hints) {
|
|
bool tryHarder = hints != null && hints.ContainsKey(DecodeHintType.TRY_HARDER);
|
|
int maxI = image.getHeight();
|
|
int maxJ = image.getWidth();
|
|
// We are looking for black/white/black/white/black modules in
|
|
// 1:1:3:1:1 ratio; this tracks the number of such modules seen so far
|
|
|
|
// Let's assume that the maximum version QR Code we support takes up 1/4 the height of the
|
|
// image, and then account for the center being 3 modules in size. This gives the smallest
|
|
// number of pixels the center could be, so skip this often. When trying harder, look for all
|
|
// QR versions regardless of how dense they are.
|
|
int iSkip = (int) (maxI / (MAX_MODULES * 4.0f) * 3);
|
|
if (iSkip < MIN_SKIP || tryHarder) {
|
|
iSkip = MIN_SKIP;
|
|
}
|
|
|
|
bool done = false;
|
|
int[] stateCount = new int[5];
|
|
BitArray blackRow = new BitArray(maxJ);
|
|
for (int i = iSkip - 1; i < maxI && !done; i += iSkip) {
|
|
// Get a row of black/white values
|
|
blackRow = image.getBlackRow(i, blackRow, 0, maxJ);
|
|
stateCount[0] = 0;
|
|
stateCount[1] = 0;
|
|
stateCount[2] = 0;
|
|
stateCount[3] = 0;
|
|
stateCount[4] = 0;
|
|
int currentState = 0;
|
|
for (int j = 0; j < maxJ; j++) {
|
|
if (blackRow.get(j)) {
|
|
// Black pixel
|
|
if ((currentState & 1) == 1) { // Counting white pixels
|
|
currentState++;
|
|
}
|
|
stateCount[currentState]++;
|
|
} else { // White pixel
|
|
if ((currentState & 1) == 0) { // Counting black pixels
|
|
if (currentState == 4) { // A winner?
|
|
if (foundPatternCross(stateCount)) { // Yes
|
|
bool confirmed = handlePossibleCenter(stateCount, i, j);
|
|
if (confirmed) {
|
|
// Start examining every other line. Checking each line turned out to be too
|
|
// expensive and didn't improve performance.
|
|
iSkip = 2;
|
|
if (hasSkipped) {
|
|
done = haveMulitplyConfirmedCenters();
|
|
} else {
|
|
int rowSkip = findRowSkip();
|
|
if (rowSkip > stateCount[2]) {
|
|
// Skip rows between row of lower confirmed center
|
|
// and top of presumed third confirmed center
|
|
// but back up a bit to get a full chance of detecting
|
|
// it, entire width of center of finder pattern
|
|
|
|
// Skip by rowSkip, but back off by stateCount[2] (size of last center
|
|
// of pattern we saw) to be conservative, and also back off by iSkip which
|
|
// is about to be re-added
|
|
i += rowSkip - stateCount[2] - iSkip;
|
|
j = maxJ - 1;
|
|
}
|
|
}
|
|
} else {
|
|
// Advance to next black pixel
|
|
do {
|
|
j++;
|
|
} while (j < maxJ && !blackRow.get(j));
|
|
j--; // back up to that last white pixel
|
|
}
|
|
// Clear state to start looking again
|
|
currentState = 0;
|
|
stateCount[0] = 0;
|
|
stateCount[1] = 0;
|
|
stateCount[2] = 0;
|
|
stateCount[3] = 0;
|
|
stateCount[4] = 0;
|
|
} else { // No, shift counts back by two
|
|
stateCount[0] = stateCount[2];
|
|
stateCount[1] = stateCount[3];
|
|
stateCount[2] = stateCount[4];
|
|
stateCount[3] = 1;
|
|
stateCount[4] = 0;
|
|
currentState = 3;
|
|
}
|
|
} else {
|
|
stateCount[++currentState]++;
|
|
}
|
|
} else { // Counting white pixels
|
|
stateCount[currentState]++;
|
|
}
|
|
}
|
|
}
|
|
if (foundPatternCross(stateCount)) {
|
|
bool confirmed = handlePossibleCenter(stateCount, i, maxJ);
|
|
if (confirmed) {
|
|
iSkip = stateCount[0];
|
|
if (hasSkipped) {
|
|
// Found a third one
|
|
done = haveMulitplyConfirmedCenters();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
FinderPattern[] patternInfo = selectBestPatterns();
|
|
GenericResultPoint.orderBestPatterns(patternInfo);
|
|
|
|
return new FinderPatternInfo(patternInfo);
|
|
}
|
|
|
|
/**
|
|
* Given a count of black/white/black/white/black pixels just seen and an end position,
|
|
* figures the location of the center of this run.
|
|
*/
|
|
private static float centerFromEnd(int[] stateCount, int end) {
|
|
return (float) (end - stateCount[4] - stateCount[3]) - stateCount[2] / 2.0f;
|
|
}
|
|
|
|
/**
|
|
* @param stateCount count of black/white/black/white/black pixels just read
|
|
* @return true iff the proportions of the counts is close enough to the 1/1/3/1/1 ratios
|
|
* used by finder patterns to be considered a match
|
|
*/
|
|
private static bool foundPatternCross(int[] stateCount) {
|
|
int totalModuleSize = 0;
|
|
for (int i = 0; i < 5; i++) {
|
|
int count = stateCount[i];
|
|
if (count == 0) {
|
|
return false;
|
|
}
|
|
totalModuleSize += count;
|
|
}
|
|
if (totalModuleSize < 7) {
|
|
return false;
|
|
}
|
|
int moduleSize = (totalModuleSize << INTEGER_MATH_SHIFT) / 7;
|
|
int maxVariance = moduleSize / 2;
|
|
// Allow less than 50% variance from 1-1-3-1-1 proportions
|
|
return Math.Abs(moduleSize - (stateCount[0] << INTEGER_MATH_SHIFT)) < maxVariance &&
|
|
Math.Abs(moduleSize - (stateCount[1] << INTEGER_MATH_SHIFT)) < maxVariance &&
|
|
Math.Abs(3 * moduleSize - (stateCount[2] << INTEGER_MATH_SHIFT)) < 3 * maxVariance &&
|
|
Math.Abs(moduleSize - (stateCount[3] << INTEGER_MATH_SHIFT)) < maxVariance &&
|
|
Math.Abs(moduleSize - (stateCount[4] << INTEGER_MATH_SHIFT)) < maxVariance;
|
|
}
|
|
|
|
private int[] getCrossCheckStateCount() {
|
|
crossCheckStateCount[0] = 0;
|
|
crossCheckStateCount[1] = 0;
|
|
crossCheckStateCount[2] = 0;
|
|
crossCheckStateCount[3] = 0;
|
|
crossCheckStateCount[4] = 0;
|
|
return crossCheckStateCount;
|
|
}
|
|
|
|
/**
|
|
* <p>After a horizontal scan finds a potential finder pattern, this method
|
|
* "cross-checks" by scanning down vertically through the center of the possible
|
|
* finder pattern to see if the same proportion is detected.</p>
|
|
*
|
|
* @param startI row where a finder pattern was detected
|
|
* @param centerJ center of the section that appears to cross a finder pattern
|
|
* @param maxCount maximum reasonable number of modules that should be
|
|
* observed in any reading state, based on the results of the horizontal scan
|
|
* @return vertical center of finder pattern, or {@link Float#NaN} if not found
|
|
*/
|
|
private float crossCheckVertical(int startI, int centerJ, int maxCount, int originalStateCountTotal) {
|
|
MonochromeBitmapSource image = this.image;
|
|
|
|
int maxI = image.getHeight();
|
|
int[] stateCount = getCrossCheckStateCount();
|
|
|
|
// Start counting up from center
|
|
int i = startI;
|
|
while (i >= 0 && image.isBlack(centerJ, i)) {
|
|
stateCount[2]++;
|
|
i--;
|
|
}
|
|
if (i < 0) {
|
|
return float.NaN;
|
|
}
|
|
while (i >= 0 && !image.isBlack(centerJ, i) && stateCount[1] <= maxCount) {
|
|
stateCount[1]++;
|
|
i--;
|
|
}
|
|
// If already too many modules in this state or ran off the edge:
|
|
if (i < 0 || stateCount[1] > maxCount) {
|
|
return float.NaN;
|
|
}
|
|
while (i >= 0 && image.isBlack(centerJ, i) && stateCount[0] <= maxCount) {
|
|
stateCount[0]++;
|
|
i--;
|
|
}
|
|
if (stateCount[0] > maxCount) {
|
|
return float.NaN;
|
|
}
|
|
|
|
// Now also count down from center
|
|
i = startI + 1;
|
|
while (i < maxI && image.isBlack(centerJ, i)) {
|
|
stateCount[2]++;
|
|
i++;
|
|
}
|
|
if (i == maxI) {
|
|
return float.NaN;
|
|
}
|
|
while (i < maxI && !image.isBlack(centerJ, i) && stateCount[3] < maxCount) {
|
|
stateCount[3]++;
|
|
i++;
|
|
}
|
|
if (i == maxI || stateCount[3] >= maxCount) {
|
|
return float.NaN;
|
|
}
|
|
while (i < maxI && image.isBlack(centerJ, i) && stateCount[4] < maxCount) {
|
|
stateCount[4]++;
|
|
i++;
|
|
}
|
|
if (stateCount[4] >= maxCount) {
|
|
return float.NaN;
|
|
}
|
|
|
|
// If we found a finder-pattern-like section, but its size is more than 20% different than
|
|
// the original, assume it's a false positive
|
|
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];
|
|
if (5 * Math.Abs(stateCountTotal - originalStateCountTotal) >= originalStateCountTotal) {
|
|
return float.NaN;
|
|
}
|
|
|
|
return foundPatternCross(stateCount) ? centerFromEnd(stateCount, i) : float.NaN;
|
|
}
|
|
|
|
/**
|
|
* <p>Like {@link #crossCheckVertical(int, int, int, int)}, and in fact is basically identical,
|
|
* except it reads horizontally instead of vertically. This is used to cross-cross
|
|
* check a vertical cross check and locate the real center of the alignment pattern.</p>
|
|
*/
|
|
private float crossCheckHorizontal(int startJ, int centerI, int maxCount, int originalStateCountTotal) {
|
|
MonochromeBitmapSource image = this.image;
|
|
|
|
int maxJ = image.getWidth();
|
|
int[] stateCount = getCrossCheckStateCount();
|
|
|
|
int j = startJ;
|
|
while (j >= 0 && image.isBlack(j, centerI)) {
|
|
stateCount[2]++;
|
|
j--;
|
|
}
|
|
if (j < 0) {
|
|
return float.NaN;
|
|
}
|
|
while (j >= 0 && !image.isBlack(j, centerI) && stateCount[1] <= maxCount) {
|
|
stateCount[1]++;
|
|
j--;
|
|
}
|
|
if (j < 0 || stateCount[1] > maxCount) {
|
|
return float.NaN;
|
|
}
|
|
while (j >= 0 && image.isBlack(j, centerI) && stateCount[0] <= maxCount) {
|
|
stateCount[0]++;
|
|
j--;
|
|
}
|
|
if (stateCount[0] > maxCount) {
|
|
return float.NaN;
|
|
}
|
|
|
|
j = startJ + 1;
|
|
while (j < maxJ && image.isBlack(j, centerI)) {
|
|
stateCount[2]++;
|
|
j++;
|
|
}
|
|
if (j == maxJ) {
|
|
return float.NaN;
|
|
}
|
|
while (j < maxJ && !image.isBlack(j, centerI) && stateCount[3] < maxCount) {
|
|
stateCount[3]++;
|
|
j++;
|
|
}
|
|
if (j == maxJ || stateCount[3] >= maxCount) {
|
|
return float.NaN;
|
|
}
|
|
while (j < maxJ && image.isBlack(j, centerI) && stateCount[4] < maxCount) {
|
|
stateCount[4]++;
|
|
j++;
|
|
}
|
|
if (stateCount[4] >= maxCount) {
|
|
return float.NaN;
|
|
}
|
|
|
|
// If we found a finder-pattern-like section, but its size is significantly different than
|
|
// the original, assume it's a false positive
|
|
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];
|
|
if (5 * Math.Abs(stateCountTotal - originalStateCountTotal) >= originalStateCountTotal) {
|
|
return float.NaN;
|
|
}
|
|
|
|
return foundPatternCross(stateCount) ? centerFromEnd(stateCount, j) : float.NaN;
|
|
}
|
|
|
|
/**
|
|
* <p>This is called when a horizontal scan finds a possible alignment pattern. It will
|
|
* cross check with a vertical scan, and if successful, will, ah, cross-cross-check
|
|
* with another horizontal scan. This is needed primarily to locate the real horizontal
|
|
* center of the pattern in cases of extreme skew.</p>
|
|
*
|
|
* <p>If that succeeds the finder pattern location is added to a list that tracks
|
|
* the number of times each location has been nearly-matched as a finder pattern.
|
|
* Each additional find is more evidence that the location is in fact a finder
|
|
* pattern center
|
|
*
|
|
* @param stateCount reading state module counts from horizontal scan
|
|
* @param i row where finder pattern may be found
|
|
* @param j end of possible finder pattern in row
|
|
* @return true if a finder pattern candidate was found this time
|
|
*/
|
|
private bool handlePossibleCenter(int[] stateCount,
|
|
int i,
|
|
int j) {
|
|
int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4];
|
|
float centerJ = centerFromEnd(stateCount, j);
|
|
float centerI = crossCheckVertical(i, (int) centerJ, stateCount[2], stateCountTotal);
|
|
if (!Single.IsNaN(centerI)) {
|
|
// Re-cross check
|
|
centerJ = crossCheckHorizontal((int) centerJ, (int) centerI, stateCount[2], stateCountTotal);
|
|
if (!Single.IsNaN(centerJ))
|
|
{
|
|
float estimatedModuleSize = (float) stateCountTotal / 7.0f;
|
|
bool found = false;
|
|
int max = possibleCenters.Count;
|
|
for (int index = 0; index < max; index++) {
|
|
FinderPattern center = (FinderPattern) possibleCenters[index];
|
|
// Look for about the same center and module size:
|
|
if (center.aboutEquals(estimatedModuleSize, centerI, centerJ)) {
|
|
center.incrementCount();
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
possibleCenters.Add(new FinderPattern(centerJ, centerI, estimatedModuleSize));
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* @return number of rows we could safely skip during scanning, based on the first
|
|
* two finder patterns that have been located. In some cases their position will
|
|
* allow us to infer that the third pattern must lie below a certain point farther
|
|
* down in the image.
|
|
*/
|
|
private int findRowSkip() {
|
|
int max = possibleCenters.Count;
|
|
if (max <= 1) {
|
|
return 0;
|
|
}
|
|
FinderPattern firstConfirmedCenter = null;
|
|
for (int i = 0; i < max; i++) {
|
|
FinderPattern center = (FinderPattern) possibleCenters[i];
|
|
if (center.getCount() >= CENTER_QUORUM) {
|
|
if (firstConfirmedCenter == null) {
|
|
firstConfirmedCenter = center;
|
|
} else {
|
|
// We have two confirmed centers
|
|
// How far down can we skip before resuming looking for the next
|
|
// pattern? In the worst case, only the difference between the
|
|
// difference in the x / y coordinates of the two centers.
|
|
// This is the case where you find top left last.
|
|
hasSkipped = true;
|
|
return (int) (Math.Abs(firstConfirmedCenter.getX() - center.getX()) -
|
|
Math.Abs(firstConfirmedCenter.getY() - center.getY())) / 2;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @return true iff we have found at least 3 finder patterns that have been detected
|
|
* at least {@link #CENTER_QUORUM} times each, and, the estimated module size of the
|
|
* candidates is "pretty similar"
|
|
*/
|
|
private bool haveMulitplyConfirmedCenters() {
|
|
int confirmedCount = 0;
|
|
float totalModuleSize = 0.0f;
|
|
int max = possibleCenters.Count;
|
|
for (int i = 0; i < max; i++) {
|
|
FinderPattern pattern = (FinderPattern) possibleCenters[i];
|
|
if (pattern.getCount() >= CENTER_QUORUM) {
|
|
confirmedCount++;
|
|
totalModuleSize += pattern.getEstimatedModuleSize();
|
|
}
|
|
}
|
|
if (confirmedCount < 3) {
|
|
return false;
|
|
}
|
|
// OK, we have at least 3 confirmed centers, but, it's possible that one is a "false positive"
|
|
// and that we need to keep looking. We detect this by asking if the estimated module sizes
|
|
// vary too much. We arbitrarily say that when the total deviation from average exceeds
|
|
// 15% of the total module size estimates, it's too much.
|
|
float average = totalModuleSize / max;
|
|
float totalDeviation = 0.0f;
|
|
for (int i = 0; i < max; i++) {
|
|
FinderPattern pattern = (FinderPattern) possibleCenters[i];
|
|
totalDeviation += Math.Abs(pattern.getEstimatedModuleSize() - average);
|
|
}
|
|
return totalDeviation <= 0.15f * totalModuleSize;
|
|
}
|
|
|
|
/**
|
|
* @return the 3 best {@link FinderPattern}s from our list of candidates. The "best" are
|
|
* those that have been detected at least {@link #CENTER_QUORUM} times, and whose module
|
|
* size differs from the average among those patterns the least
|
|
* @throws ReaderException if 3 such finder patterns do not exist
|
|
*/
|
|
private FinderPattern[] selectBestPatterns(){
|
|
Collections.insertionSort(possibleCenters, new CenterComparator());
|
|
int size = 0;
|
|
int max = possibleCenters.Count;
|
|
while (size < max) {
|
|
if (((FinderPattern) possibleCenters[size]).getCount() < CENTER_QUORUM) {
|
|
break;
|
|
}
|
|
size++;
|
|
}
|
|
|
|
if (size < 3) {
|
|
// Couldn't find enough finder patterns
|
|
throw new ReaderException();
|
|
}
|
|
|
|
if (size > 3) {
|
|
// Throw away all but those first size candidate points we found.
|
|
SupportClass.SetCapacity(possibleCenters, size);
|
|
// We need to pick the best three. Find the most
|
|
// popular ones whose module size is nearest the average
|
|
float averageModuleSize = 0.0f;
|
|
for (int i = 0; i < size; i++) {
|
|
averageModuleSize += ((FinderPattern) possibleCenters[i]).getEstimatedModuleSize();
|
|
}
|
|
averageModuleSize /= (float) size;
|
|
// We don't have java.util.Collections in J2ME
|
|
Collections.insertionSort(possibleCenters, new ClosestToAverageComparator(averageModuleSize));
|
|
}
|
|
|
|
return new FinderPattern[]{
|
|
(FinderPattern) possibleCenters[0],
|
|
(FinderPattern) possibleCenters[1],
|
|
(FinderPattern) possibleCenters[2]
|
|
};
|
|
}
|
|
|
|
/**
|
|
* <p>Orders by {@link FinderPattern#getCount()}, descending.</p>
|
|
*/
|
|
private class CenterComparator : Comparator {
|
|
public int compare(object center1, object center2)
|
|
{
|
|
return ((FinderPattern) center2).getCount() - ((FinderPattern) center1).getCount();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* <p>Orders by variance from average module size, ascending.</p>
|
|
*/
|
|
private class ClosestToAverageComparator : Comparator {
|
|
private float averageModuleSize;
|
|
|
|
public ClosestToAverageComparator(float averageModuleSize) {
|
|
this.averageModuleSize = averageModuleSize;
|
|
}
|
|
|
|
public int compare(object center1, object center2)
|
|
{
|
|
return Math.Abs(((FinderPattern) center1).getEstimatedModuleSize() - averageModuleSize) <
|
|
Math.Abs(((FinderPattern) center2).getEstimatedModuleSize() - averageModuleSize) ?
|
|
-1 :
|
|
1;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
} |