zxing/csharp/oned/ITFReader.cs
srowen d4efd44fb0 New C# port from Suraj Supekar
git-svn-id: https://zxing.googlecode.com/svn/trunk@1202 59b500cc-1b3d-0410-9834-0bbf25fbcc57
2010-02-05 19:52:53 +00:00

382 lines
14 KiB
C#
Executable file

/*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using BarcodeFormat = com.google.zxing.BarcodeFormat;
using DecodeHintType = com.google.zxing.DecodeHintType;
using ReaderException = com.google.zxing.ReaderException;
using Result = com.google.zxing.Result;
using ResultPoint = com.google.zxing.ResultPoint;
using BitArray = com.google.zxing.common.BitArray;
namespace com.google.zxing.oned
{
/// <summary> <p>Implements decoding of the ITF format.</p>
///
/// <p>"ITF" stands for Interleaved Two of Five. This Reader will scan ITF barcode with 6, 10 or 14
/// digits. The checksum is optional and is not applied by this Reader. The consumer of the decoded
/// value will have to apply a checksum if required.</p>
///
/// <p><a href="http://en.wikipedia.org/wiki/Interleaved_2_of_5">http://en.wikipedia.org/wiki/Interleaved_2_of_5</a>
/// is a great reference for Interleaved 2 of 5 information.</p>
///
/// </summary>
/// <author> kevin.osullivan@sita.aero, SITA Lab.
/// </author>
/// <author>www.Redivivus.in (suraj.supekar@redivivus.in) - Ported from ZXING Java Source
/// </author>
public sealed class ITFReader:OneDReader
{
//UPGRADE_NOTE: Final was removed from the declaration of 'MAX_AVG_VARIANCE '. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
//UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
private static readonly int MAX_AVG_VARIANCE = (int) (PATTERN_MATCH_RESULT_SCALE_FACTOR * 0.42f);
//UPGRADE_NOTE: Final was removed from the declaration of 'MAX_INDIVIDUAL_VARIANCE '. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
//UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
private static readonly int MAX_INDIVIDUAL_VARIANCE = (int) (PATTERN_MATCH_RESULT_SCALE_FACTOR * 0.8f);
private const int W = 3; // Pixel width of a wide line
private const int N = 1; // Pixed width of a narrow line
//UPGRADE_NOTE: Final was removed from the declaration of 'DEFAULT_ALLOWED_LENGTHS'. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
private static readonly int[] DEFAULT_ALLOWED_LENGTHS = new int[]{6, 10, 14, 44};
// Stores the actual narrow line width of the image being decoded.
private int narrowLineWidth = - 1;
/// <summary> Start/end guard pattern.
///
/// Note: The end pattern is reversed because the row is reversed before
/// searching for the END_PATTERN
/// </summary>
//UPGRADE_NOTE: Final was removed from the declaration of 'START_PATTERN '. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
private static readonly int[] START_PATTERN = new int[]{N, N, N, N};
//UPGRADE_NOTE: Final was removed from the declaration of 'END_PATTERN_REVERSED '. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
private static readonly int[] END_PATTERN_REVERSED = new int[]{N, N, W};
/// <summary> Patterns of Wide / Narrow lines to indicate each digit</summary>
//UPGRADE_NOTE: Final was removed from the declaration of 'PATTERNS '. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1003'"
private static readonly int[][] PATTERNS = new int[][]{new int[]{N, N, W, W, N}, new int[]{W, N, N, N, W}, new int[]{N, W, N, N, W}, new int[]{W, W, N, N, N}, new int[]{N, N, W, N, W}, new int[]{W, N, W, N, N}, new int[]{N, W, W, N, N}, new int[]{N, N, N, W, W}, new int[]{W, N, N, W, N}, new int[]{N, W, N, W, N}};
public override Result decodeRow(int rowNumber, BitArray row, System.Collections.Hashtable hints)
{
// Find out where the Middle section (payload) starts & ends
int[] startRange = decodeStart(row);
int[] endRange = decodeEnd(row);
System.Text.StringBuilder result = new System.Text.StringBuilder(20);
decodeMiddle(row, startRange[1], endRange[0], result);
System.String resultString = result.ToString();
int[] allowedLengths = null;
if (hints != null)
{
allowedLengths = (int[]) hints[DecodeHintType.ALLOWED_LENGTHS];
}
if (allowedLengths == null)
{
allowedLengths = DEFAULT_ALLOWED_LENGTHS;
}
// To avoid false positives with 2D barcodes (and other patterns), make
// an assumption that the decoded string must be 6, 10 or 14 digits.
int length = resultString.Length;
bool lengthOK = false;
for (int i = 0; i < allowedLengths.Length; i++)
{
if (length == allowedLengths[i])
{
lengthOK = true;
break;
}
}
if (!lengthOK)
{
throw ReaderException.Instance;
}
//UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
return new Result(resultString, null, new ResultPoint[]{new ResultPoint(startRange[1], (float) rowNumber), new ResultPoint(endRange[0], (float) rowNumber)}, BarcodeFormat.ITF);
}
/// <param name="row"> row of black/white values to search
/// </param>
/// <param name="payloadStart">offset of start pattern
/// </param>
/// <param name="resultString">{@link StringBuffer} to append decoded chars to
/// </param>
/// <throws> ReaderException if decoding could not complete successfully </throws>
private static void decodeMiddle(BitArray row, int payloadStart, int payloadEnd, System.Text.StringBuilder resultString)
{
// Digits are interleaved in pairs - 5 black lines for one digit, and the
// 5
// interleaved white lines for the second digit.
// Therefore, need to scan 10 lines and then
// split these into two arrays
int[] counterDigitPair = new int[10];
int[] counterBlack = new int[5];
int[] counterWhite = new int[5];
while (payloadStart < payloadEnd)
{
// Get 10 runs of black/white.
recordPattern(row, payloadStart, counterDigitPair);
// Split them into each array
for (int k = 0; k < 5; k++)
{
int twoK = k << 1;
counterBlack[k] = counterDigitPair[twoK];
counterWhite[k] = counterDigitPair[twoK + 1];
}
int bestMatch = decodeDigit(counterBlack);
resultString.Append((char) ('0' + bestMatch));
bestMatch = decodeDigit(counterWhite);
resultString.Append((char) ('0' + bestMatch));
for (int i = 0; i < counterDigitPair.Length; i++)
{
payloadStart += counterDigitPair[i];
}
}
}
/// <summary> Identify where the start of the middle / payload section starts.
///
/// </summary>
/// <param name="row">row of black/white values to search
/// </param>
/// <returns> Array, containing index of start of 'start block' and end of
/// 'start block'
/// </returns>
/// <throws> ReaderException </throws>
internal int[] decodeStart(BitArray row)
{
int endStart = skipWhiteSpace(row);
int[] startPattern = findGuardPattern(row, endStart, START_PATTERN);
// Determine the width of a narrow line in pixels. We can do this by
// getting the width of the start pattern and dividing by 4 because its
// made up of 4 narrow lines.
this.narrowLineWidth = (startPattern[1] - startPattern[0]) >> 2;
validateQuietZone(row, startPattern[0]);
return startPattern;
}
/// <summary> The start & end patterns must be pre/post fixed by a quiet zone. This
/// zone must be at least 10 times the width of a narrow line. Scan back until
/// we either get to the start of the barcode or match the necessary number of
/// quiet zone pixels.
///
/// Note: Its assumed the row is reversed when using this method to find
/// quiet zone after the end pattern.
///
/// ref: http://www.barcode-1.net/i25code.html
///
/// </summary>
/// <param name="row">bit array representing the scanned barcode.
/// </param>
/// <param name="startPattern">index into row of the start or end pattern.
/// </param>
/// <throws> ReaderException if the quiet zone cannot be found, a ReaderException is thrown. </throws>
private void validateQuietZone(BitArray row, int startPattern)
{
int quietCount = this.narrowLineWidth * 10; // expect to find this many pixels of quiet zone
for (int i = startPattern - 1; quietCount > 0 && i >= 0; i--)
{
if (row.get_Renamed(i))
{
break;
}
quietCount--;
}
if (quietCount != 0)
{
// Unable to find the necessary number of quiet zone pixels.
throw ReaderException.Instance;
}
}
/// <summary> Skip all whitespace until we get to the first black line.
///
/// </summary>
/// <param name="row">row of black/white values to search
/// </param>
/// <returns> index of the first black line.
/// </returns>
/// <throws> ReaderException Throws exception if no black lines are found in the row </throws>
private static int skipWhiteSpace(BitArray row)
{
int width = row.Size;
int endStart = 0;
while (endStart < width)
{
if (row.get_Renamed(endStart))
{
break;
}
endStart++;
}
if (endStart == width)
{
throw ReaderException.Instance;
}
return endStart;
}
/// <summary> Identify where the end of the middle / payload section ends.
///
/// </summary>
/// <param name="row">row of black/white values to search
/// </param>
/// <returns> Array, containing index of start of 'end block' and end of 'end
/// block'
/// </returns>
/// <throws> ReaderException </throws>
internal int[] decodeEnd(BitArray row)
{
// For convenience, reverse the row and then
// search from 'the start' for the end block
row.reverse();
try
{
int endStart = skipWhiteSpace(row);
int[] endPattern = findGuardPattern(row, endStart, END_PATTERN_REVERSED);
// The start & end patterns must be pre/post fixed by a quiet zone. This
// zone must be at least 10 times the width of a narrow line.
// ref: http://www.barcode-1.net/i25code.html
validateQuietZone(row, endPattern[0]);
// Now recalculate the indices of where the 'endblock' starts & stops to
// accommodate
// the reversed nature of the search
int temp = endPattern[0];
endPattern[0] = row.Size - endPattern[1];
endPattern[1] = row.Size - temp;
return endPattern;
}
finally
{
// Put the row back the right way.
row.reverse();
}
}
/// <param name="row"> row of black/white values to search
/// </param>
/// <param name="rowOffset">position to start search
/// </param>
/// <param name="pattern"> pattern of counts of number of black and white pixels that are
/// being searched for as a pattern
/// </param>
/// <returns> start/end horizontal offset of guard pattern, as an array of two
/// ints
/// </returns>
/// <throws> ReaderException if pattern is not found </throws>
private static int[] findGuardPattern(BitArray row, int rowOffset, int[] pattern)
{
// TODO: This is very similar to implementation in UPCEANReader. Consider if they can be
// merged to a single method.
int patternLength = pattern.Length;
int[] counters = new int[patternLength];
int width = row.Size;
bool isWhite = false;
int counterPosition = 0;
int patternStart = rowOffset;
for (int x = rowOffset; x < width; x++)
{
bool pixel = row.get_Renamed(x);
if (pixel ^ isWhite)
{
counters[counterPosition]++;
}
else
{
if (counterPosition == patternLength - 1)
{
if (patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE) < MAX_AVG_VARIANCE)
{
return new int[]{patternStart, x};
}
patternStart += counters[0] + counters[1];
for (int y = 2; y < patternLength; y++)
{
counters[y - 2] = counters[y];
}
counters[patternLength - 2] = 0;
counters[patternLength - 1] = 0;
counterPosition--;
}
else
{
counterPosition++;
}
counters[counterPosition] = 1;
isWhite = !isWhite;
}
}
throw ReaderException.Instance;
}
/// <summary> Attempts to decode a sequence of ITF black/white lines into single
/// digit.
///
/// </summary>
/// <param name="counters">the counts of runs of observed black/white/black/... values
/// </param>
/// <returns> The decoded digit
/// </returns>
/// <throws> ReaderException if digit cannot be decoded </throws>
private static int decodeDigit(int[] counters)
{
int bestVariance = MAX_AVG_VARIANCE; // worst variance we'll accept
int bestMatch = - 1;
int max = PATTERNS.Length;
for (int i = 0; i < max; i++)
{
int[] pattern = PATTERNS[i];
int variance = patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE);
if (variance < bestVariance)
{
bestVariance = variance;
bestMatch = i;
}
}
if (bestMatch >= 0)
{
return bestMatch;
}
else
{
throw ReaderException.Instance;
}
}
}
}