zxing/csharp/qrcode/detector/Detector.cs
srowen 7854d30103 Committed C# port from Mohamad
git-svn-id: https://zxing.googlecode.com/svn/trunk@817 59b500cc-1b3d-0410-9834-0bbf25fbcc57
2009-01-08 17:02:40 +00:00

362 lines
16 KiB
C#
Executable file

/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using com.google.zxing;
using com.google.zxing.common;
namespace com.google.zxing.qrcode.detector
{
using Version = com.google.zxing.qrcode.decoder.Version;
public sealed class Detector
{
private MonochromeBitmapSource image;
public Detector(MonochromeBitmapSource image) {
this.image = image;
}
/**
* <p>Detects a QR Code in an image, simply.</p>
*
* @return {@link DetectorResult} encapsulating results of detecting a QR Code
* @throws ReaderException if no QR Code can be found
*/
public DetectorResult detect(){
try{
return detect(null);
}catch(Exception e){
throw new ReaderException(e.Message);
}
}
/**
* <p>Detects a QR Code in an image, simply.</p>
*
* @param hints optional hints to detector
* @return {@link DetectorResult} encapsulating results of detecting a QR Code
* @throws ReaderException if no QR Code can be found
*/
public DetectorResult detect(System.Collections.Hashtable hints) {
MonochromeBitmapSource image = this.image;
if (!BlackPointEstimationMethod.TWO_D_SAMPLING.Equals(image.getLastEstimationMethod())) {
image.estimateBlackPoint(BlackPointEstimationMethod.TWO_D_SAMPLING, 0);
}
FinderPatternFinder finder = new FinderPatternFinder(image);
FinderPatternInfo info = finder.find(hints);
FinderPattern topLeft = info.getTopLeft();
FinderPattern topRight = info.getTopRight();
FinderPattern bottomLeft = info.getBottomLeft();
float moduleSize = calculateModuleSize(topLeft, topRight, bottomLeft);
if (moduleSize < 1.0f) {
throw new ReaderException();
}
int dimension = computeDimension(topLeft, topRight, bottomLeft, moduleSize);
Version provisionalVersion = Version.getProvisionalVersionForDimension(dimension);
int modulesBetweenFPCenters = provisionalVersion.getDimensionForVersion() - 7;
AlignmentPattern alignmentPattern = null;
// Anything above version 1 has an alignment pattern
if (provisionalVersion.getAlignmentPatternCenters().Length > 0) {
// Guess where a "bottom right" finder pattern would have been
float bottomRightX = topRight.getX() - topLeft.getX() + bottomLeft.getX();
float bottomRightY = topRight.getY() - topLeft.getY() + bottomLeft.getY();
// Estimate that alignment pattern is closer by 3 modules
// from "bottom right" to known top left location
float correctionToTopLeft = 1.0f - 3.0f / (float) modulesBetweenFPCenters;
int estAlignmentX = (int) (topLeft.getX() + correctionToTopLeft * (bottomRightX - topLeft.getX()));
int estAlignmentY = (int) (topLeft.getY() + correctionToTopLeft * (bottomRightY - topLeft.getY()));
// Kind of arbitrary -- expand search radius before giving up
for (int i = 4; i <= 16; i <<= 1) {
try {
alignmentPattern = findAlignmentInRegion(moduleSize,
estAlignmentX,
estAlignmentY,
(float) i);
break;
} catch (ReaderException re) {
// try next round
}
}
if (alignmentPattern == null) {
throw new ReaderException();
}
}
BitMatrix bits = sampleGrid(image, topLeft, topRight, bottomLeft, alignmentPattern, dimension);
ResultPoint[] points;
if (alignmentPattern == null) {
points = new ResultPoint[]{bottomLeft, topLeft, topRight};
} else {
points = new ResultPoint[]{bottomLeft, topLeft, topRight, alignmentPattern};
}
return new DetectorResult(bits, points);
}
private static BitMatrix sampleGrid(MonochromeBitmapSource image,
ResultPoint topLeft,
ResultPoint topRight,
ResultPoint bottomLeft,
ResultPoint alignmentPattern,
int dimension) {
float dimMinusThree = (float) dimension - 3.5f;
float bottomRightX;
float bottomRightY;
float sourceBottomRightX;
float sourceBottomRightY;
if (alignmentPattern != null) {
bottomRightX = alignmentPattern.getX();
bottomRightY = alignmentPattern.getY();
sourceBottomRightX = sourceBottomRightY = dimMinusThree - 3.0f;
} else {
// Don't have an alignment pattern, just make up the bottom-right point
bottomRightX = (topRight.getX() - topLeft.getX()) + bottomLeft.getX();
bottomRightY = (topRight.getY() - topLeft.getY()) + bottomLeft.getY();
sourceBottomRightX = sourceBottomRightY = dimMinusThree;
}
GridSampler sampler = GridSampler.Instance;
return sampler.sampleGrid(
image,
dimension,
3.5f,
3.5f,
dimMinusThree,
3.5f,
sourceBottomRightX,
sourceBottomRightY,
3.5f,
dimMinusThree,
topLeft.getX(),
topLeft.getY(),
topRight.getX(),
topRight.getY(),
bottomRightX,
bottomRightY,
bottomLeft.getX(),
bottomLeft.getY());
}
/**
* <p>Computes the dimension (number of modules on a size) of the QR Code based on the position
* of the finder patterns and estimated module size.</p>
*/
private static int computeDimension(ResultPoint topLeft,
ResultPoint topRight,
ResultPoint bottomLeft,
float moduleSize) {
int tltrCentersDimension = round(GenericResultPoint.distance(topLeft, topRight) / moduleSize);
int tlblCentersDimension = round(GenericResultPoint.distance(topLeft, bottomLeft) / moduleSize);
int dimension = ((tltrCentersDimension + tlblCentersDimension) >> 1) + 7;
switch (dimension & 0x03) { // mod 4
case 0:
dimension++;
break;
// 1? do nothing
case 2:
dimension--;
break;
case 3:
throw new ReaderException();
}
return dimension;
}
/**
* <p>Computes an average estimated module size based on estimated derived from the positions
* of the three finder patterns.</p>
*/
private float calculateModuleSize(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft) {
// Take the average
return (calculateModuleSizeOneWay(topLeft, topRight) +
calculateModuleSizeOneWay(topLeft, bottomLeft)) / 2.0f;
}
/**
* <p>Estimates module size based on two finder patterns -- it uses
* {@link #sizeOfBlackWhiteBlackRunBothWays(int, int, int, int)} to figure the
* width of each, measuring along the axis between their centers.</p>
*/
private float calculateModuleSizeOneWay(ResultPoint pattern, ResultPoint otherPattern) {
float moduleSizeEst1 = sizeOfBlackWhiteBlackRunBothWays((int) pattern.getX(),
(int) pattern.getY(),
(int) otherPattern.getX(),
(int) otherPattern.getY());
float moduleSizeEst2 = sizeOfBlackWhiteBlackRunBothWays((int) otherPattern.getX(),
(int) otherPattern.getY(),
(int) pattern.getX(),
(int) pattern.getY());
if (Single.IsNaN(moduleSizeEst1)) {
return moduleSizeEst2;
}
if (Single.IsNaN(moduleSizeEst2))
{
return moduleSizeEst1;
}
// Average them, and divide by 7 since we've counted the width of 3 black modules,
// and 1 white and 1 black module on either side. Ergo, divide sum by 14.
return (moduleSizeEst1 + moduleSizeEst2) / 14.0f;
}
/**
* See {@link #sizeOfBlackWhiteBlackRun(int, int, int, int)}; computes the total width of
* a finder pattern by looking for a black-white-black run from the center in the direction
* of another point (another finder pattern center), and in the opposite direction too.</p>
*/
private float sizeOfBlackWhiteBlackRunBothWays(int fromX, int fromY, int toX, int toY) {
float result = sizeOfBlackWhiteBlackRun(fromX, fromY, toX, toY);
// Now count other way -- don't run off image though of course
int otherToX = fromX - (toX - fromX);
if (otherToX < 0) {
// "to" should the be the first value not included, so, the first value off
// the edge is -1
otherToX = -1;
} else if (otherToX >= image.getWidth()) {
otherToX = image.getWidth();
}
int otherToY = fromY - (toY - fromY);
if (otherToY < 0) {
otherToY = -1;
} else if (otherToY >= image.getHeight()) {
otherToY = image.getHeight();
}
result += sizeOfBlackWhiteBlackRun(fromX, fromY, otherToX, otherToY);
return result - 1.0f; // -1 because we counted the middle pixel twice
}
/**
* <p>This method traces a line from a point in the image, in the direction towards another point.
* It begins in a black region, and keeps going until it finds white, then black, then white again.
* It reports the distance from the start to this point.</p>
*
* <p>This is used when figuring out how wide a finder pattern is, when the finder pattern
* may be skewed or rotated.</p>
*/
private float sizeOfBlackWhiteBlackRun(int fromX, int fromY, int toX, int toY) {
// Mild variant of Bresenham's algorithm;
// see http://en.wikipedia.org/wiki/Bresenham's_line_algorithm
bool steep = Math.Abs(toY - fromY) > Math.Abs(toX - fromX);
if (steep) {
int temp = fromX;
fromX = fromY;
fromY = temp;
temp = toX;
toX = toY;
toY = temp;
}
int dx = Math.Abs(toX - fromX);
int dy = Math.Abs(toY - fromY);
int error = -dx >> 1;
int ystep = fromY < toY ? 1 : -1;
int xstep = fromX < toX ? 1 : -1;
int state = 0; // In black pixels, looking for white, first or second time
int diffX =0;
int diffY =0;
for (int x = fromX, y = fromY; x != toX; x += xstep) {
int realX = steep ? y : x;
int realY = steep ? x : y;
if (state == 1) { // In white pixels, looking for black
if (image.isBlack(realX, realY)) {
state++;
}
} else {
if (!image.isBlack(realX, realY)) {
state++;
}
}
if (state == 3) { // Found black, white, black, and stumbled back onto white; done
diffX = x - fromX;
diffY = y - fromY;
return (float) Math.Sqrt((double) (diffX * diffX + diffY * diffY));
}
error += dy;
if (error > 0) {
y += ystep;
error -= dx;
}
}
diffX = toX - fromX;
diffY = toY - fromY;
return (float) Math.Sqrt((double) (diffX * diffX + diffY * diffY));
}
/**
* <p>Attempts to locate an alignment pattern in a limited region of the image, which is
* guessed to contain it. This method uses {@link AlignmentPattern}.</p>
*
* @param overallEstModuleSize estimated module size so far
* @param estAlignmentX x coordinate of center of area probably containing alignment pattern
* @param estAlignmentY y coordinate of above
* @param allowanceFactor number of pixels in all directons to search from the center
* @return {@link AlignmentPattern} if found, or null otherwise
* @throws ReaderException if an unexpected error occurs during detection
*/
private AlignmentPattern findAlignmentInRegion(float overallEstModuleSize,
int estAlignmentX,
int estAlignmentY,
float allowanceFactor){
// Look for an alignment pattern (3 modules in size) around where it
// should be
int allowance = (int) (allowanceFactor * overallEstModuleSize);
int alignmentAreaLeftX = Math.Max(0, estAlignmentX - allowance);
int alignmentAreaRightX = Math.Min(image.getWidth() - 1, estAlignmentX + allowance);
if (alignmentAreaRightX - alignmentAreaLeftX < overallEstModuleSize * 3) {
throw new ReaderException();
}
int alignmentAreaTopY = Math.Max(0, estAlignmentY - allowance);
int alignmentAreaBottomY = Math.Min(image.getHeight() - 1, estAlignmentY + allowance);
AlignmentPatternFinder alignmentFinder =
new AlignmentPatternFinder(
image,
alignmentAreaLeftX,
alignmentAreaTopY,
alignmentAreaRightX - alignmentAreaLeftX,
alignmentAreaBottomY - alignmentAreaTopY,
overallEstModuleSize);
return alignmentFinder.find();
}
/**
* Ends up being a bit faster than Math.round(). This merely rounds its argument to the nearest int,
* where x.5 rounds up.
*/
private static int round(float d) {
return (int) (d + 0.5f);
}
}
}