fix(AI Agent Node): Move model retrieval into try/catch to fix continueOnFail handling (#13165)

This commit is contained in:
oleg 2025-02-13 15:47:41 +01:00 committed by GitHub
parent ba95f97d10
commit 47c5688618
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 602 additions and 172 deletions

View file

@ -1,4 +1,5 @@
import type { BaseChatMemory } from '@langchain/community/memory/chat_memory';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { HumanMessage } from '@langchain/core/messages';
import type { BaseMessage } from '@langchain/core/messages';
import type { BaseMessagePromptTemplateLike } from '@langchain/core/prompts';
@ -8,6 +9,7 @@ import type { Tool } from '@langchain/core/tools';
import { DynamicStructuredTool } from '@langchain/core/tools';
import type { AgentAction, AgentFinish } from 'langchain/agents';
import { AgentExecutor, createToolCallingAgent } from 'langchain/agents';
import type { ToolsAgentAction } from 'langchain/dist/agents/tool_calling/output_parser';
import { omit } from 'lodash';
import { BINARY_ENCODING, jsonParse, NodeConnectionType, NodeOperationError } from 'n8n-workflow';
import type { IExecuteFunctions, INodeExecutionData } from 'n8n-workflow';
@ -22,28 +24,53 @@ import {
import { SYSTEM_MESSAGE } from './prompt';
function getOutputParserSchema(outputParser: N8nOutputParser): ZodObject<any, any, any, any> {
/* -----------------------------------------------------------
Output Parser Helper
----------------------------------------------------------- */
/**
* Retrieve the output parser schema.
* If the parser does not return a valid schema, default to a schema with a single text field.
*/
export function getOutputParserSchema(
outputParser: N8nOutputParser,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
): ZodObject<any, any, any, any> {
const schema =
// eslint-disable-next-line @typescript-eslint/no-explicit-any
(outputParser.getSchema() as ZodObject<any, any, any, any>) ?? z.object({ text: z.string() });
return schema;
}
async function extractBinaryMessages(ctx: IExecuteFunctions) {
const binaryData = ctx.getInputData()?.[0]?.binary ?? {};
/* -----------------------------------------------------------
Binary Data Helpers
----------------------------------------------------------- */
/**
* Extracts binary image messages from the input data.
* When operating in filesystem mode, the binary stream is first converted to a buffer.
*
* @param ctx - The execution context
* @param itemIndex - The current item index
* @returns A HumanMessage containing the binary image messages.
*/
export async function extractBinaryMessages(
ctx: IExecuteFunctions,
itemIndex: number,
): Promise<HumanMessage> {
const binaryData = ctx.getInputData()?.[itemIndex]?.binary ?? {};
const binaryMessages = await Promise.all(
Object.values(binaryData)
.filter((data) => data.mimeType.startsWith('image/'))
.map(async (data) => {
let binaryUrlString;
let binaryUrlString: string;
// In filesystem mode we need to get binary stream by id before converting it to buffer
if (data.id) {
const binaryBuffer = await ctx.helpers.binaryToBuffer(
await ctx.helpers.getBinaryStream(data.id),
);
binaryUrlString = `data:${data.mimeType};base64,${Buffer.from(binaryBuffer).toString(BINARY_ENCODING)}`;
binaryUrlString = `data:${data.mimeType};base64,${Buffer.from(binaryBuffer).toString(
BINARY_ENCODING,
)}`;
} else {
binaryUrlString = data.data.includes('base64')
? data.data
@ -62,6 +89,10 @@ async function extractBinaryMessages(ctx: IExecuteFunctions) {
content: [...binaryMessages],
});
}
/* -----------------------------------------------------------
Agent Output Format Helpers
----------------------------------------------------------- */
/**
* Fixes empty content messages in agent steps.
*
@ -73,7 +104,9 @@ async function extractBinaryMessages(ctx: IExecuteFunctions) {
* @param steps - The agent steps to fix
* @returns The fixed agent steps
*/
function fixEmptyContentMessage(steps: AgentFinish | AgentAction[]) {
export function fixEmptyContentMessage(
steps: AgentFinish | ToolsAgentAction[],
): AgentFinish | ToolsAgentAction[] {
if (!Array.isArray(steps)) return steps;
steps.forEach((step) => {
@ -96,111 +129,111 @@ function fixEmptyContentMessage(steps: AgentFinish | AgentAction[]) {
return steps;
}
export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
this.logger.debug('Executing Tools Agent');
const model = await this.getInputConnectionData(NodeConnectionType.AiLanguageModel, 0);
/**
* Ensures consistent handling of outputs regardless of the model used,
* providing a unified output format for further processing.
*
* This method is necessary to handle different output formats from various language models.
* Specifically, it checks if the agent step is the final step (contains returnValues) and determines
* if the output is a simple string (e.g., from OpenAI models) or an array of outputs (e.g., from Anthropic models).
*
* Examples:
* 1. Anthropic model output:
* ```json
* {
* "output": [
* {
* "index": 0,
* "type": "text",
* "text": "The result of the calculation is approximately 1001.8166..."
* }
* ]
* }
*```
* 2. OpenAI model output:
* ```json
* {
* "output": "The result of the calculation is approximately 1001.82..."
* }
* ```
*
* @param steps - The agent finish or agent action steps.
* @returns The modified agent finish steps or the original steps.
*/
export function handleAgentFinishOutput(
steps: AgentFinish | AgentAction[],
): AgentFinish | AgentAction[] {
type AgentMultiOutputFinish = AgentFinish & {
returnValues: { output: Array<{ text: string; type: string; index: number }> };
};
const agentFinishSteps = steps as AgentMultiOutputFinish | AgentFinish;
if (!isChatInstance(model) || !model.bindTools) {
throw new NodeOperationError(
this.getNode(),
'Tools Agent requires Chat Model which supports Tools calling',
);
}
const memory = (await this.getInputConnectionData(NodeConnectionType.AiMemory, 0)) as
| BaseChatMemory
| undefined;
const tools = (await getConnectedTools(this, true, false)) as Array<DynamicStructuredTool | Tool>;
const outputParser = (await getOptionalOutputParsers(this))?.[0];
let structuredOutputParserTool: DynamicStructuredTool | undefined;
/**
* Ensures consistent handling of outputs regardless of the model used,
* providing a unified output format for further processing.
*
* This method is necessary to handle different output formats from various language models.
* Specifically, it checks if the agent step is the final step (contains returnValues) and determines
* if the output is a simple string (e.g., from OpenAI models) or an array of outputs (e.g., from Anthropic models).
*
* Examples:
* 1. Anthropic model output:
* ```json
* {
* "output": [
* {
* "index": 0,
* "type": "text",
* "text": "The result of the calculation is approximately 1001.8166..."
* }
* ]
* }
*```
* 2. OpenAI model output:
* ```json
* {
* "output": "The result of the calculation is approximately 1001.82..."
* }
* ```
*
* @param steps - The agent finish or agent action steps.
* @returns The modified agent finish steps or the original steps.
*/
function handleAgentFinishOutput(steps: AgentFinish | AgentAction[]) {
// Check if the steps contain multiple outputs
type AgentMultiOutputFinish = AgentFinish & {
returnValues: { output: Array<{ text: string; type: string; index: number }> };
};
const agentFinishSteps = steps as AgentMultiOutputFinish | AgentFinish;
if (agentFinishSteps.returnValues) {
const isMultiOutput = Array.isArray(agentFinishSteps.returnValues?.output);
if (isMultiOutput) {
// Define the type for each item in the multi-output array
type MultiOutputItem = { index: number; type: string; text: string };
const multiOutputSteps = agentFinishSteps.returnValues.output as MultiOutputItem[];
// Check if all items in the multi-output array are of type 'text'
const isTextOnly = (multiOutputSteps ?? []).every((output) => 'text' in output);
if (isTextOnly) {
// If all items are of type 'text', merge them into a single string
agentFinishSteps.returnValues.output = multiOutputSteps
.map((output) => output.text)
.join('\n')
.trim();
}
return agentFinishSteps;
if (agentFinishSteps.returnValues) {
const isMultiOutput = Array.isArray(agentFinishSteps.returnValues?.output);
if (isMultiOutput) {
// If all items in the multi-output array are of type 'text', merge them into a single string
const multiOutputSteps = agentFinishSteps.returnValues.output as Array<{
index: number;
type: string;
text: string;
}>;
const isTextOnly = multiOutputSteps.every((output) => 'text' in output);
if (isTextOnly) {
agentFinishSteps.returnValues.output = multiOutputSteps
.map((output) => output.text)
.join('\n')
.trim();
}
return agentFinishSteps;
}
// If the steps do not contain multiple outputs, return them as is
return agentFinishSteps;
}
// If memory is connected we need to stringify the returnValues so that it can be saved in the memory as a string
function handleParsedStepOutput(output: Record<string, unknown>) {
return {
returnValues: memory ? { output: JSON.stringify(output) } : output,
log: 'Final response formatted',
};
}
async function agentStepsParser(
steps: AgentFinish | AgentAction[],
): Promise<AgentFinish | AgentAction[]> {
return agentFinishSteps;
}
/**
* Wraps the parsed output so that it can be stored in memory.
* If memory is connected, the output is stringified.
*
* @param output - The parsed output object
* @param memory - The connected memory (if any)
* @returns The formatted output object
*/
export function handleParsedStepOutput(
output: Record<string, unknown>,
memory?: BaseChatMemory,
): { returnValues: Record<string, unknown>; log: string } {
return {
returnValues: memory ? { output: JSON.stringify(output) } : output,
log: 'Final response formatted',
};
}
/**
* Parses agent steps using the provided output parser.
* If the agent used the 'format_final_response' tool, the output is parsed accordingly.
*
* @param steps - The agent finish or action steps
* @param outputParser - The output parser (if defined)
* @param memory - The connected memory (if any)
* @returns The parsed steps with the final output
*/
export const getAgentStepsParser =
(outputParser?: N8nOutputParser, memory?: BaseChatMemory) =>
async (steps: AgentFinish | AgentAction[]): Promise<AgentFinish | AgentAction[]> => {
// Check if the steps contain the 'format_final_response' tool invocation.
if (Array.isArray(steps)) {
const responseParserTool = steps.find((step) => step.tool === 'format_final_response');
if (responseParserTool) {
const toolInput = responseParserTool?.toolInput;
// Check if the tool input is a string or an object and convert it to a string
if (responseParserTool && outputParser) {
const toolInput = responseParserTool.toolInput;
// Ensure the tool input is a string
const parserInput = toolInput instanceof Object ? JSON.stringify(toolInput) : toolInput;
const returnValues = (await outputParser.parse(parserInput)) as Record<string, unknown>;
return handleParsedStepOutput(returnValues);
return handleParsedStepOutput(returnValues, memory);
}
}
// If the steps are an AgentFinish and the outputParser is defined it must mean that the LLM didn't use `format_final_response` tool so we will try to parse the output manually
// Otherwise, if the steps contain a returnValues field, try to parse them manually.
if (outputParser && typeof steps === 'object' && (steps as AgentFinish).returnValues) {
const finalResponse = (steps as AgentFinish).returnValues;
let parserInput: string;
@ -213,7 +246,7 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
// so we try to parse the output before wrapping it and then stringify it
parserInput = JSON.stringify({ output: jsonParse(finalResponse.output) });
} catch (error) {
// If parsing of the output fails, we will use the raw output
// Fallback to the raw output if parsing fails.
parserInput = finalResponse.output;
}
} else {
@ -225,88 +258,207 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
}
const returnValues = (await outputParser.parse(parserInput)) as Record<string, unknown>;
return handleParsedStepOutput(returnValues);
return handleParsedStepOutput(returnValues, memory);
}
return handleAgentFinishOutput(steps);
}
return handleAgentFinishOutput(steps);
};
/* -----------------------------------------------------------
Agent Setup Helpers
----------------------------------------------------------- */
/**
* Retrieves the language model from the input connection.
* Throws an error if the model is not a valid chat instance or does not support tools.
*
* @param ctx - The execution context
* @returns The validated chat model
*/
export async function getChatModel(ctx: IExecuteFunctions): Promise<BaseChatModel> {
const model = await ctx.getInputConnectionData(NodeConnectionType.AiLanguageModel, 0);
if (!isChatInstance(model) || !model.bindTools) {
throw new NodeOperationError(
ctx.getNode(),
'Tools Agent requires Chat Model which supports Tools calling',
);
}
return model;
}
/**
* Retrieves the memory instance from the input connection if it is connected
*
* @param ctx - The execution context
* @returns The connected memory (if any)
*/
export async function getOptionalMemory(
ctx: IExecuteFunctions,
): Promise<BaseChatMemory | undefined> {
return (await ctx.getInputConnectionData(NodeConnectionType.AiMemory, 0)) as
| BaseChatMemory
| undefined;
}
/**
* Retrieves the connected tools and (if an output parser is defined)
* appends a structured output parser tool.
*
* @param ctx - The execution context
* @param outputParser - The optional output parser
* @returns The array of connected tools
*/
export async function getTools(
ctx: IExecuteFunctions,
outputParser?: N8nOutputParser,
): Promise<Array<DynamicStructuredTool | Tool>> {
const tools = (await getConnectedTools(ctx, true, false)) as Array<DynamicStructuredTool | Tool>;
// If an output parser is available, create a dynamic tool to validate the final output.
if (outputParser) {
const schema = getOutputParserSchema(outputParser);
structuredOutputParserTool = new DynamicStructuredTool({
const structuredOutputParserTool = new DynamicStructuredTool({
schema,
name: 'format_final_response',
description:
'Always use this tool for the final output to the user. It validates the output so only use it when you are sure the output is final.',
// We will not use the function here as we will use the parser to intercept & parse the output in the agentStepsParser
// We do not use a function here because we intercept the output with the parser.
func: async () => '',
});
tools.push(structuredOutputParserTool);
}
return tools;
}
const options = this.getNodeParameter('options', 0, {}) as {
/**
* Prepares the prompt messages for the agent.
*
* @param ctx - The execution context
* @param itemIndex - The current item index
* @param options - Options containing systemMessage and other parameters
* @returns The array of prompt messages
*/
export async function prepareMessages(
ctx: IExecuteFunctions,
itemIndex: number,
options: {
systemMessage?: string;
maxIterations?: number;
returnIntermediateSteps?: boolean;
};
const passthroughBinaryImages = this.getNodeParameter('options.passthroughBinaryImages', 0, true);
passthroughBinaryImages?: boolean;
outputParser?: N8nOutputParser;
},
): Promise<BaseMessagePromptTemplateLike[]> {
const messages: BaseMessagePromptTemplateLike[] = [
['system', `{system_message}${outputParser ? '\n\n{formatting_instructions}' : ''}`],
['system', `{system_message}${options.outputParser ? '\n\n{formatting_instructions}' : ''}`],
['placeholder', '{chat_history}'],
['human', '{input}'],
];
const hasBinaryData = this.getInputData()?.[0]?.binary !== undefined;
if (hasBinaryData && passthroughBinaryImages) {
const binaryMessage = await extractBinaryMessages(this);
// If there is binary data and the node option permits it, add a binary message
const hasBinaryData = ctx.getInputData()?.[itemIndex]?.binary !== undefined;
if (hasBinaryData && options.passthroughBinaryImages) {
const binaryMessage = await extractBinaryMessages(ctx, itemIndex);
messages.push(binaryMessage);
}
// We add the agent scratchpad last, so that the agent will not run in loops
// by adding binary messages between each interaction
messages.push(['placeholder', '{agent_scratchpad}']);
const prompt = ChatPromptTemplate.fromMessages(messages);
return messages;
}
const agent = createToolCallingAgent({
llm: model,
tools,
prompt,
streamRunnable: false,
});
agent.streamRunnable = false;
/**
* Creates the chat prompt from messages.
*
* @param messages - The messages array
* @returns The ChatPromptTemplate instance
*/
export function preparePrompt(messages: BaseMessagePromptTemplateLike[]): ChatPromptTemplate {
return ChatPromptTemplate.fromMessages(messages);
}
const runnableAgent = RunnableSequence.from([agent, agentStepsParser, fixEmptyContentMessage]);
/* -----------------------------------------------------------
Main Executor Function
----------------------------------------------------------- */
/**
* The main executor method for the Tools Agent.
*
* This function retrieves necessary components (model, memory, tools), prepares the prompt,
* creates the agent, and processes each input item. The error handling for each item is also
* managed here based on the node's continueOnFail setting.
*
* @returns The array of execution data for all processed items
*/
export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
this.logger.debug('Executing Tools Agent');
const executor = AgentExecutor.fromAgentAndTools({
agent: runnableAgent,
memory,
tools,
returnIntermediateSteps: options.returnIntermediateSteps === true,
maxIterations: options.maxIterations ?? 10,
});
const returnData: INodeExecutionData[] = [];
const items = this.getInputData();
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
try {
const model = await getChatModel(this);
const memory = await getOptionalMemory(this);
const outputParsers = await getOptionalOutputParsers(this);
const outputParser = outputParsers?.[0];
const tools = await getTools(this, outputParser);
const input = getPromptInputByType({
ctx: this,
i: itemIndex,
inputKey: 'text',
promptTypeKey: 'promptType',
});
if (input === undefined) {
throw new NodeOperationError(this.getNode(), 'The text parameter is empty.');
throw new NodeOperationError(this.getNode(), 'The “text” parameter is empty.');
}
const response = await executor.invoke({
input,
system_message: options.systemMessage ?? SYSTEM_MESSAGE,
formatting_instructions:
'IMPORTANT: Always call `format_final_response` to format your final response!',
const options = this.getNodeParameter('options', itemIndex, {}) as {
systemMessage?: string;
maxIterations?: number;
returnIntermediateSteps?: boolean;
passthroughBinaryImages?: boolean;
};
// Prepare the prompt messages and prompt template.
const messages = await prepareMessages(this, itemIndex, {
systemMessage: options.systemMessage,
passthroughBinaryImages: options.passthroughBinaryImages ?? true,
outputParser,
});
const prompt = preparePrompt(messages);
// Create the base agent that calls tools.
const agent = createToolCallingAgent({
llm: model,
tools,
prompt,
streamRunnable: false,
});
agent.streamRunnable = false;
// Wrap the agent with parsers and fixes.
const runnableAgent = RunnableSequence.from([
agent,
getAgentStepsParser(outputParser, memory),
fixEmptyContentMessage,
]);
const executor = AgentExecutor.fromAgentAndTools({
agent: runnableAgent,
memory,
tools,
returnIntermediateSteps: options.returnIntermediateSteps === true,
maxIterations: options.maxIterations ?? 10,
});
// Invoke the executor with the given input and system message.
const response = await executor.invoke(
{
input,
system_message: options.systemMessage ?? SYSTEM_MESSAGE,
formatting_instructions:
'IMPORTANT: Always call `format_final_response` to format your final response!',
},
{ signal: this.getExecutionCancelSignal() },
);
// If memory and outputParser are connected, parse the output.
if (memory && outputParser) {
const parsedOutput = jsonParse<{ output: Record<string, unknown> }>(
response.output as string,
@ -314,7 +466,8 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
response.output = parsedOutput?.output ?? parsedOutput;
}
returnData.push({
// Omit internal keys before returning the result.
const itemResult = {
json: omit(
response,
'system_message',
@ -323,7 +476,9 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
'chat_history',
'agent_scratchpad',
),
});
};
returnData.push(itemResult);
} catch (error) {
if (this.continueOnFail()) {
returnData.push({
@ -332,7 +487,6 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
});
continue;
}
throw error;
}
}

View file

@ -0,0 +1,273 @@
// ToolsAgent.test.ts
import type { BaseChatMemory } from '@langchain/community/memory/chat_memory';
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { HumanMessage } from '@langchain/core/messages';
import type { BaseMessagePromptTemplateLike } from '@langchain/core/prompts';
import { FakeTool } from '@langchain/core/utils/testing';
import { Buffer } from 'buffer';
import { mock } from 'jest-mock-extended';
import type { ToolsAgentAction } from 'langchain/dist/agents/tool_calling/output_parser';
import type { Tool } from 'langchain/tools';
import type { IExecuteFunctions } from 'n8n-workflow';
import { NodeOperationError, BINARY_ENCODING } from 'n8n-workflow';
import type { ZodType } from 'zod';
import { z } from 'zod';
import * as helpersModule from '@utils/helpers';
import type { N8nOutputParser } from '@utils/output_parsers/N8nOutputParser';
import {
getOutputParserSchema,
extractBinaryMessages,
fixEmptyContentMessage,
handleParsedStepOutput,
getChatModel,
getOptionalMemory,
prepareMessages,
preparePrompt,
getTools,
} from '../agents/ToolsAgent/execute';
// We need to override the imported getConnectedTools so that we control its output.
jest.spyOn(helpersModule, 'getConnectedTools').mockResolvedValue([FakeTool as unknown as Tool]);
function getFakeOutputParser(returnSchema?: ZodType): N8nOutputParser {
const fakeOutputParser = mock<N8nOutputParser>();
(fakeOutputParser.getSchema as jest.Mock).mockReturnValue(returnSchema);
return fakeOutputParser;
}
function createFakeExecuteFunctions(overrides: Partial<IExecuteFunctions> = {}): IExecuteFunctions {
return {
getNodeParameter: jest
.fn()
.mockImplementation((_arg1: string, _arg2: number, defaultValue?: unknown) => {
return defaultValue;
}),
getNode: jest.fn().mockReturnValue({}),
getInputConnectionData: jest.fn().mockResolvedValue({}),
getInputData: jest.fn().mockReturnValue([]),
continueOnFail: jest.fn().mockReturnValue(false),
logger: { debug: jest.fn() },
helpers: {},
...overrides,
} as unknown as IExecuteFunctions;
}
describe('getOutputParserSchema', () => {
it('should return a default schema if getSchema returns undefined', () => {
const schema = getOutputParserSchema(getFakeOutputParser(undefined));
// The default schema requires a "text" field.
expect(() => schema.parse({})).toThrow();
expect(schema.parse({ text: 'hello' })).toEqual({ text: 'hello' });
});
it('should return the custom schema if provided', () => {
const customSchema = z.object({ custom: z.number() });
const schema = getOutputParserSchema(getFakeOutputParser(customSchema));
expect(() => schema.parse({ custom: 'not a number' })).toThrow();
expect(schema.parse({ custom: 123 })).toEqual({ custom: 123 });
});
});
describe('extractBinaryMessages', () => {
it('should extract a binary message from the input data when no id is provided', async () => {
const fakeItem = {
binary: {
img1: {
mimeType: 'image/png',
// simulate that data already includes 'base64'
data: '',
},
},
};
const ctx = createFakeExecuteFunctions({
getInputData: jest.fn().mockReturnValue([fakeItem]),
});
const humanMsg: HumanMessage = await extractBinaryMessages(ctx, 0);
// Expect the HumanMessage's content to be an array containing one binary message.
expect(Array.isArray(humanMsg.content)).toBe(true);
expect(humanMsg.content[0]).toEqual({
type: 'image_url',
image_url: { url: '' },
});
});
it('should extract a binary message using binary stream if id is provided', async () => {
const fakeItem = {
binary: {
img2: {
mimeType: 'image/jpeg',
id: '1234',
data: 'nonsense',
},
},
};
// Cast fakeHelpers as any to satisfy type requirements.
const fakeHelpers = {
getBinaryStream: jest.fn().mockResolvedValue('stream'),
binaryToBuffer: jest.fn().mockResolvedValue(Buffer.from('fakebufferdata')),
} as unknown as IExecuteFunctions['helpers'];
const ctx = createFakeExecuteFunctions({
getInputData: jest.fn().mockReturnValue([fakeItem]),
helpers: fakeHelpers,
});
const humanMsg: HumanMessage = await extractBinaryMessages(ctx, 0);
// eslint-disable-next-line @typescript-eslint/unbound-method
expect(fakeHelpers.getBinaryStream).toHaveBeenCalledWith('1234');
// eslint-disable-next-line @typescript-eslint/unbound-method
expect(fakeHelpers.binaryToBuffer).toHaveBeenCalled();
const expectedUrl = `data:image/jpeg;base64,${Buffer.from('fakebufferdata').toString(
BINARY_ENCODING,
)}`;
expect(humanMsg.content[0]).toEqual({
type: 'image_url',
image_url: { url: expectedUrl },
});
});
});
describe('fixEmptyContentMessage', () => {
it('should replace empty string inputs with empty objects', () => {
// Cast to any to bypass type issues with AgentFinish/AgentAction.
const fakeSteps: ToolsAgentAction[] = [
{
messageLog: [
{
content: [{ input: '' }, { input: { already: 'object' } }],
},
],
},
] as unknown as ToolsAgentAction[];
const fixed = fixEmptyContentMessage(fakeSteps) as ToolsAgentAction[];
const messageContent = fixed?.[0]?.messageLog?.[0].content;
// Type assertion needed since we're extending MessageContentComplex
expect((messageContent?.[0] as { input: unknown })?.input).toEqual({});
expect((messageContent?.[1] as { input: unknown })?.input).toEqual({ already: 'object' });
});
});
describe('handleParsedStepOutput', () => {
it('should stringify the output if memory is provided', () => {
const output = { key: 'value' };
const fakeMemory = mock<BaseChatMemory>();
const result = handleParsedStepOutput(output, fakeMemory);
expect(result.returnValues).toEqual({ output: JSON.stringify(output) });
expect(result.log).toEqual('Final response formatted');
});
it('should not stringify the output if memory is not provided', () => {
const output = { key: 'value' };
const result = handleParsedStepOutput(output);
expect(result.returnValues).toEqual(output);
});
});
describe('getChatModel', () => {
it('should return the model if it is a valid chat model', async () => {
// Cast fakeChatModel as any
const fakeChatModel = mock<BaseChatModel>();
fakeChatModel.bindTools = jest.fn();
fakeChatModel.lc_namespace = ['chat_models'];
const ctx = createFakeExecuteFunctions({
getInputConnectionData: jest.fn().mockResolvedValue(fakeChatModel),
});
const model = await getChatModel(ctx);
expect(model).toEqual(fakeChatModel);
});
it('should throw if the model is not a valid chat model', async () => {
const fakeInvalidModel = mock<BaseChatModel>(); // missing bindTools & lc_namespace
fakeInvalidModel.lc_namespace = [];
const ctx = createFakeExecuteFunctions({
getInputConnectionData: jest.fn().mockResolvedValue(fakeInvalidModel),
getNode: jest.fn().mockReturnValue({}),
});
await expect(getChatModel(ctx)).rejects.toThrow(NodeOperationError);
});
});
describe('getOptionalMemory', () => {
it('should return the memory if available', async () => {
const fakeMemory = { some: 'memory' };
const ctx = createFakeExecuteFunctions({
getInputConnectionData: jest.fn().mockResolvedValue(fakeMemory),
});
const memory = await getOptionalMemory(ctx);
expect(memory).toEqual(fakeMemory);
});
});
describe('getTools', () => {
it('should retrieve tools without appending if outputParser is not provided', async () => {
const ctx = createFakeExecuteFunctions();
const tools = await getTools(ctx);
expect(tools.length).toEqual(1);
});
it('should retrieve tools and append the structured output parser tool if outputParser is provided', async () => {
const fakeOutputParser = getFakeOutputParser(z.object({ text: z.string() }));
const ctx = createFakeExecuteFunctions();
const tools = await getTools(ctx, fakeOutputParser);
// Our fake getConnectedTools returns one tool; with outputParser, one extra is appended.
expect(tools.length).toEqual(2);
const dynamicTool = tools.find((t) => t.name === 'format_final_response');
expect(dynamicTool).toBeDefined();
});
});
describe('prepareMessages', () => {
it('should include a binary message if binary data is present and passthroughBinaryImages is true', async () => {
const fakeItem = {
binary: {
img1: {
mimeType: 'image/png',
data: '',
},
},
};
const ctx = createFakeExecuteFunctions({
getInputData: jest.fn().mockReturnValue([fakeItem]),
});
const messages = await prepareMessages(ctx, 0, {
systemMessage: 'Test system',
passthroughBinaryImages: true,
});
// Check if any message is an instance of HumanMessage
const hasBinaryMessage = messages.some(
(m) => typeof m === 'object' && m instanceof HumanMessage,
);
expect(hasBinaryMessage).toBe(true);
});
it('should not include a binary message if no binary data is present', async () => {
const fakeItem = { json: {} }; // no binary key
const ctx = createFakeExecuteFunctions({
getInputData: jest.fn().mockReturnValue([fakeItem]),
});
const messages = await prepareMessages(ctx, 0, {
systemMessage: 'Test system',
passthroughBinaryImages: true,
});
const hasHumanMessage = messages.some((m) => m instanceof HumanMessage);
expect(hasHumanMessage).toBe(false);
});
});
describe('preparePrompt', () => {
it('should return a ChatPromptTemplate instance', () => {
const sampleMessages: BaseMessagePromptTemplateLike[] = [
['system', 'Test'],
['human', 'Hello'],
];
const prompt = preparePrompt(sampleMessages);
expect(prompt).toBeDefined();
});
});

View file

@ -524,16 +524,16 @@ export class ChainLlm implements INodeType {
const items = this.getInputData();
const returnData: INodeExecutionData[] = [];
const llm = (await this.getInputConnectionData(
NodeConnectionType.AiLanguageModel,
0,
)) as BaseLanguageModel;
const outputParsers = await getOptionalOutputParsers(this);
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
try {
let prompt: string;
const llm = (await this.getInputConnectionData(
NodeConnectionType.AiLanguageModel,
0,
)) as BaseLanguageModel;
const outputParsers = await getOptionalOutputParsers(this);
if (this.getNode().typeVersion <= 1.3) {
prompt = this.getNodeParameter('prompt', itemIndex) as string;
} else {

View file

@ -163,23 +163,21 @@ export class ChainRetrievalQa implements INodeType {
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
this.logger.debug('Executing Retrieval QA Chain');
const model = (await this.getInputConnectionData(
NodeConnectionType.AiLanguageModel,
0,
)) as BaseLanguageModel;
const retriever = (await this.getInputConnectionData(
NodeConnectionType.AiRetriever,
0,
)) as BaseRetriever;
const items = this.getInputData();
const returnData: INodeExecutionData[] = [];
// Run for each item
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
try {
const model = (await this.getInputConnectionData(
NodeConnectionType.AiLanguageModel,
0,
)) as BaseLanguageModel;
const retriever = (await this.getInputConnectionData(
NodeConnectionType.AiRetriever,
0,
)) as BaseRetriever;
let query;
if (this.getNode().typeVersion <= 1.2) {
@ -226,7 +224,9 @@ export class ChainRetrievalQa implements INodeType {
const chain = RetrievalQAChain.fromLLM(model, retriever, chainParameters);
const response = await chain.withConfig(getTracingConfig(this)).invoke({ query });
const response = await chain
.withConfig(getTracingConfig(this))
.invoke({ query }, { signal: this.getExecutionCancelSignal() });
returnData.push({ json: { response } });
} catch (error) {
if (this.continueOnFail()) {

View file

@ -321,16 +321,16 @@ export class ChainSummarizationV2 implements INodeType {
| 'simple'
| 'advanced';
const model = (await this.getInputConnectionData(
NodeConnectionType.AiLanguageModel,
0,
)) as BaseLanguageModel;
const items = this.getInputData();
const returnData: INodeExecutionData[] = [];
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
try {
const model = (await this.getInputConnectionData(
NodeConnectionType.AiLanguageModel,
0,
)) as BaseLanguageModel;
const summarizationMethodAndPrompts = this.getNodeParameter(
'options.summarizationMethodAndPrompts.values',
itemIndex,
@ -411,9 +411,12 @@ export class ChainSummarizationV2 implements INodeType {
}
const processedItem = await processor.processItem(item, itemIndex);
const response = await chain.call({
input_documents: processedItem,
});
const response = await chain.invoke(
{
input_documents: processedItem,
},
{ signal: this.getExecutionCancelSignal() },
);
returnData.push({ json: { response } });
}
} catch (error) {