mirror of
https://github.com/n8n-io/n8n.git
synced 2025-03-05 20:50:17 -08:00
fix(AI Agent Node): Move model retrieval into try/catch to fix continueOnFail handling (#13165)
This commit is contained in:
parent
ba95f97d10
commit
47c5688618
|
@ -1,4 +1,5 @@
|
|||
import type { BaseChatMemory } from '@langchain/community/memory/chat_memory';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { HumanMessage } from '@langchain/core/messages';
|
||||
import type { BaseMessage } from '@langchain/core/messages';
|
||||
import type { BaseMessagePromptTemplateLike } from '@langchain/core/prompts';
|
||||
|
@ -8,6 +9,7 @@ import type { Tool } from '@langchain/core/tools';
|
|||
import { DynamicStructuredTool } from '@langchain/core/tools';
|
||||
import type { AgentAction, AgentFinish } from 'langchain/agents';
|
||||
import { AgentExecutor, createToolCallingAgent } from 'langchain/agents';
|
||||
import type { ToolsAgentAction } from 'langchain/dist/agents/tool_calling/output_parser';
|
||||
import { omit } from 'lodash';
|
||||
import { BINARY_ENCODING, jsonParse, NodeConnectionType, NodeOperationError } from 'n8n-workflow';
|
||||
import type { IExecuteFunctions, INodeExecutionData } from 'n8n-workflow';
|
||||
|
@ -22,28 +24,53 @@ import {
|
|||
|
||||
import { SYSTEM_MESSAGE } from './prompt';
|
||||
|
||||
function getOutputParserSchema(outputParser: N8nOutputParser): ZodObject<any, any, any, any> {
|
||||
/* -----------------------------------------------------------
|
||||
Output Parser Helper
|
||||
----------------------------------------------------------- */
|
||||
/**
|
||||
* Retrieve the output parser schema.
|
||||
* If the parser does not return a valid schema, default to a schema with a single text field.
|
||||
*/
|
||||
export function getOutputParserSchema(
|
||||
outputParser: N8nOutputParser,
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
): ZodObject<any, any, any, any> {
|
||||
const schema =
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
(outputParser.getSchema() as ZodObject<any, any, any, any>) ?? z.object({ text: z.string() });
|
||||
|
||||
return schema;
|
||||
}
|
||||
|
||||
async function extractBinaryMessages(ctx: IExecuteFunctions) {
|
||||
const binaryData = ctx.getInputData()?.[0]?.binary ?? {};
|
||||
/* -----------------------------------------------------------
|
||||
Binary Data Helpers
|
||||
----------------------------------------------------------- */
|
||||
/**
|
||||
* Extracts binary image messages from the input data.
|
||||
* When operating in filesystem mode, the binary stream is first converted to a buffer.
|
||||
*
|
||||
* @param ctx - The execution context
|
||||
* @param itemIndex - The current item index
|
||||
* @returns A HumanMessage containing the binary image messages.
|
||||
*/
|
||||
export async function extractBinaryMessages(
|
||||
ctx: IExecuteFunctions,
|
||||
itemIndex: number,
|
||||
): Promise<HumanMessage> {
|
||||
const binaryData = ctx.getInputData()?.[itemIndex]?.binary ?? {};
|
||||
const binaryMessages = await Promise.all(
|
||||
Object.values(binaryData)
|
||||
.filter((data) => data.mimeType.startsWith('image/'))
|
||||
.map(async (data) => {
|
||||
let binaryUrlString;
|
||||
let binaryUrlString: string;
|
||||
|
||||
// In filesystem mode we need to get binary stream by id before converting it to buffer
|
||||
if (data.id) {
|
||||
const binaryBuffer = await ctx.helpers.binaryToBuffer(
|
||||
await ctx.helpers.getBinaryStream(data.id),
|
||||
);
|
||||
|
||||
binaryUrlString = `data:${data.mimeType};base64,${Buffer.from(binaryBuffer).toString(BINARY_ENCODING)}`;
|
||||
binaryUrlString = `data:${data.mimeType};base64,${Buffer.from(binaryBuffer).toString(
|
||||
BINARY_ENCODING,
|
||||
)}`;
|
||||
} else {
|
||||
binaryUrlString = data.data.includes('base64')
|
||||
? data.data
|
||||
|
@ -62,6 +89,10 @@ async function extractBinaryMessages(ctx: IExecuteFunctions) {
|
|||
content: [...binaryMessages],
|
||||
});
|
||||
}
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Agent Output Format Helpers
|
||||
----------------------------------------------------------- */
|
||||
/**
|
||||
* Fixes empty content messages in agent steps.
|
||||
*
|
||||
|
@ -73,7 +104,9 @@ async function extractBinaryMessages(ctx: IExecuteFunctions) {
|
|||
* @param steps - The agent steps to fix
|
||||
* @returns The fixed agent steps
|
||||
*/
|
||||
function fixEmptyContentMessage(steps: AgentFinish | AgentAction[]) {
|
||||
export function fixEmptyContentMessage(
|
||||
steps: AgentFinish | ToolsAgentAction[],
|
||||
): AgentFinish | ToolsAgentAction[] {
|
||||
if (!Array.isArray(steps)) return steps;
|
||||
|
||||
steps.forEach((step) => {
|
||||
|
@ -96,111 +129,111 @@ function fixEmptyContentMessage(steps: AgentFinish | AgentAction[]) {
|
|||
return steps;
|
||||
}
|
||||
|
||||
export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
|
||||
this.logger.debug('Executing Tools Agent');
|
||||
const model = await this.getInputConnectionData(NodeConnectionType.AiLanguageModel, 0);
|
||||
/**
|
||||
* Ensures consistent handling of outputs regardless of the model used,
|
||||
* providing a unified output format for further processing.
|
||||
*
|
||||
* This method is necessary to handle different output formats from various language models.
|
||||
* Specifically, it checks if the agent step is the final step (contains returnValues) and determines
|
||||
* if the output is a simple string (e.g., from OpenAI models) or an array of outputs (e.g., from Anthropic models).
|
||||
*
|
||||
* Examples:
|
||||
* 1. Anthropic model output:
|
||||
* ```json
|
||||
* {
|
||||
* "output": [
|
||||
* {
|
||||
* "index": 0,
|
||||
* "type": "text",
|
||||
* "text": "The result of the calculation is approximately 1001.8166..."
|
||||
* }
|
||||
* ]
|
||||
* }
|
||||
*```
|
||||
* 2. OpenAI model output:
|
||||
* ```json
|
||||
* {
|
||||
* "output": "The result of the calculation is approximately 1001.82..."
|
||||
* }
|
||||
* ```
|
||||
*
|
||||
* @param steps - The agent finish or agent action steps.
|
||||
* @returns The modified agent finish steps or the original steps.
|
||||
*/
|
||||
export function handleAgentFinishOutput(
|
||||
steps: AgentFinish | AgentAction[],
|
||||
): AgentFinish | AgentAction[] {
|
||||
type AgentMultiOutputFinish = AgentFinish & {
|
||||
returnValues: { output: Array<{ text: string; type: string; index: number }> };
|
||||
};
|
||||
const agentFinishSteps = steps as AgentMultiOutputFinish | AgentFinish;
|
||||
|
||||
if (!isChatInstance(model) || !model.bindTools) {
|
||||
throw new NodeOperationError(
|
||||
this.getNode(),
|
||||
'Tools Agent requires Chat Model which supports Tools calling',
|
||||
);
|
||||
}
|
||||
|
||||
const memory = (await this.getInputConnectionData(NodeConnectionType.AiMemory, 0)) as
|
||||
| BaseChatMemory
|
||||
| undefined;
|
||||
|
||||
const tools = (await getConnectedTools(this, true, false)) as Array<DynamicStructuredTool | Tool>;
|
||||
const outputParser = (await getOptionalOutputParsers(this))?.[0];
|
||||
let structuredOutputParserTool: DynamicStructuredTool | undefined;
|
||||
/**
|
||||
* Ensures consistent handling of outputs regardless of the model used,
|
||||
* providing a unified output format for further processing.
|
||||
*
|
||||
* This method is necessary to handle different output formats from various language models.
|
||||
* Specifically, it checks if the agent step is the final step (contains returnValues) and determines
|
||||
* if the output is a simple string (e.g., from OpenAI models) or an array of outputs (e.g., from Anthropic models).
|
||||
*
|
||||
* Examples:
|
||||
* 1. Anthropic model output:
|
||||
* ```json
|
||||
* {
|
||||
* "output": [
|
||||
* {
|
||||
* "index": 0,
|
||||
* "type": "text",
|
||||
* "text": "The result of the calculation is approximately 1001.8166..."
|
||||
* }
|
||||
* ]
|
||||
* }
|
||||
*```
|
||||
* 2. OpenAI model output:
|
||||
* ```json
|
||||
* {
|
||||
* "output": "The result of the calculation is approximately 1001.82..."
|
||||
* }
|
||||
* ```
|
||||
*
|
||||
* @param steps - The agent finish or agent action steps.
|
||||
* @returns The modified agent finish steps or the original steps.
|
||||
*/
|
||||
function handleAgentFinishOutput(steps: AgentFinish | AgentAction[]) {
|
||||
// Check if the steps contain multiple outputs
|
||||
type AgentMultiOutputFinish = AgentFinish & {
|
||||
returnValues: { output: Array<{ text: string; type: string; index: number }> };
|
||||
};
|
||||
const agentFinishSteps = steps as AgentMultiOutputFinish | AgentFinish;
|
||||
|
||||
if (agentFinishSteps.returnValues) {
|
||||
const isMultiOutput = Array.isArray(agentFinishSteps.returnValues?.output);
|
||||
|
||||
if (isMultiOutput) {
|
||||
// Define the type for each item in the multi-output array
|
||||
type MultiOutputItem = { index: number; type: string; text: string };
|
||||
const multiOutputSteps = agentFinishSteps.returnValues.output as MultiOutputItem[];
|
||||
|
||||
// Check if all items in the multi-output array are of type 'text'
|
||||
const isTextOnly = (multiOutputSteps ?? []).every((output) => 'text' in output);
|
||||
|
||||
if (isTextOnly) {
|
||||
// If all items are of type 'text', merge them into a single string
|
||||
agentFinishSteps.returnValues.output = multiOutputSteps
|
||||
.map((output) => output.text)
|
||||
.join('\n')
|
||||
.trim();
|
||||
}
|
||||
return agentFinishSteps;
|
||||
if (agentFinishSteps.returnValues) {
|
||||
const isMultiOutput = Array.isArray(agentFinishSteps.returnValues?.output);
|
||||
if (isMultiOutput) {
|
||||
// If all items in the multi-output array are of type 'text', merge them into a single string
|
||||
const multiOutputSteps = agentFinishSteps.returnValues.output as Array<{
|
||||
index: number;
|
||||
type: string;
|
||||
text: string;
|
||||
}>;
|
||||
const isTextOnly = multiOutputSteps.every((output) => 'text' in output);
|
||||
if (isTextOnly) {
|
||||
agentFinishSteps.returnValues.output = multiOutputSteps
|
||||
.map((output) => output.text)
|
||||
.join('\n')
|
||||
.trim();
|
||||
}
|
||||
return agentFinishSteps;
|
||||
}
|
||||
|
||||
// If the steps do not contain multiple outputs, return them as is
|
||||
return agentFinishSteps;
|
||||
}
|
||||
|
||||
// If memory is connected we need to stringify the returnValues so that it can be saved in the memory as a string
|
||||
function handleParsedStepOutput(output: Record<string, unknown>) {
|
||||
return {
|
||||
returnValues: memory ? { output: JSON.stringify(output) } : output,
|
||||
log: 'Final response formatted',
|
||||
};
|
||||
}
|
||||
async function agentStepsParser(
|
||||
steps: AgentFinish | AgentAction[],
|
||||
): Promise<AgentFinish | AgentAction[]> {
|
||||
return agentFinishSteps;
|
||||
}
|
||||
|
||||
/**
|
||||
* Wraps the parsed output so that it can be stored in memory.
|
||||
* If memory is connected, the output is stringified.
|
||||
*
|
||||
* @param output - The parsed output object
|
||||
* @param memory - The connected memory (if any)
|
||||
* @returns The formatted output object
|
||||
*/
|
||||
export function handleParsedStepOutput(
|
||||
output: Record<string, unknown>,
|
||||
memory?: BaseChatMemory,
|
||||
): { returnValues: Record<string, unknown>; log: string } {
|
||||
return {
|
||||
returnValues: memory ? { output: JSON.stringify(output) } : output,
|
||||
log: 'Final response formatted',
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Parses agent steps using the provided output parser.
|
||||
* If the agent used the 'format_final_response' tool, the output is parsed accordingly.
|
||||
*
|
||||
* @param steps - The agent finish or action steps
|
||||
* @param outputParser - The output parser (if defined)
|
||||
* @param memory - The connected memory (if any)
|
||||
* @returns The parsed steps with the final output
|
||||
*/
|
||||
export const getAgentStepsParser =
|
||||
(outputParser?: N8nOutputParser, memory?: BaseChatMemory) =>
|
||||
async (steps: AgentFinish | AgentAction[]): Promise<AgentFinish | AgentAction[]> => {
|
||||
// Check if the steps contain the 'format_final_response' tool invocation.
|
||||
if (Array.isArray(steps)) {
|
||||
const responseParserTool = steps.find((step) => step.tool === 'format_final_response');
|
||||
if (responseParserTool) {
|
||||
const toolInput = responseParserTool?.toolInput;
|
||||
// Check if the tool input is a string or an object and convert it to a string
|
||||
if (responseParserTool && outputParser) {
|
||||
const toolInput = responseParserTool.toolInput;
|
||||
// Ensure the tool input is a string
|
||||
const parserInput = toolInput instanceof Object ? JSON.stringify(toolInput) : toolInput;
|
||||
const returnValues = (await outputParser.parse(parserInput)) as Record<string, unknown>;
|
||||
|
||||
return handleParsedStepOutput(returnValues);
|
||||
return handleParsedStepOutput(returnValues, memory);
|
||||
}
|
||||
}
|
||||
|
||||
// If the steps are an AgentFinish and the outputParser is defined it must mean that the LLM didn't use `format_final_response` tool so we will try to parse the output manually
|
||||
// Otherwise, if the steps contain a returnValues field, try to parse them manually.
|
||||
if (outputParser && typeof steps === 'object' && (steps as AgentFinish).returnValues) {
|
||||
const finalResponse = (steps as AgentFinish).returnValues;
|
||||
let parserInput: string;
|
||||
|
@ -213,7 +246,7 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
|
|||
// so we try to parse the output before wrapping it and then stringify it
|
||||
parserInput = JSON.stringify({ output: jsonParse(finalResponse.output) });
|
||||
} catch (error) {
|
||||
// If parsing of the output fails, we will use the raw output
|
||||
// Fallback to the raw output if parsing fails.
|
||||
parserInput = finalResponse.output;
|
||||
}
|
||||
} else {
|
||||
|
@ -225,88 +258,207 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
|
|||
}
|
||||
|
||||
const returnValues = (await outputParser.parse(parserInput)) as Record<string, unknown>;
|
||||
return handleParsedStepOutput(returnValues);
|
||||
return handleParsedStepOutput(returnValues, memory);
|
||||
}
|
||||
return handleAgentFinishOutput(steps);
|
||||
}
|
||||
|
||||
return handleAgentFinishOutput(steps);
|
||||
};
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Agent Setup Helpers
|
||||
----------------------------------------------------------- */
|
||||
/**
|
||||
* Retrieves the language model from the input connection.
|
||||
* Throws an error if the model is not a valid chat instance or does not support tools.
|
||||
*
|
||||
* @param ctx - The execution context
|
||||
* @returns The validated chat model
|
||||
*/
|
||||
export async function getChatModel(ctx: IExecuteFunctions): Promise<BaseChatModel> {
|
||||
const model = await ctx.getInputConnectionData(NodeConnectionType.AiLanguageModel, 0);
|
||||
if (!isChatInstance(model) || !model.bindTools) {
|
||||
throw new NodeOperationError(
|
||||
ctx.getNode(),
|
||||
'Tools Agent requires Chat Model which supports Tools calling',
|
||||
);
|
||||
}
|
||||
return model;
|
||||
}
|
||||
|
||||
/**
|
||||
* Retrieves the memory instance from the input connection if it is connected
|
||||
*
|
||||
* @param ctx - The execution context
|
||||
* @returns The connected memory (if any)
|
||||
*/
|
||||
export async function getOptionalMemory(
|
||||
ctx: IExecuteFunctions,
|
||||
): Promise<BaseChatMemory | undefined> {
|
||||
return (await ctx.getInputConnectionData(NodeConnectionType.AiMemory, 0)) as
|
||||
| BaseChatMemory
|
||||
| undefined;
|
||||
}
|
||||
|
||||
/**
|
||||
* Retrieves the connected tools and (if an output parser is defined)
|
||||
* appends a structured output parser tool.
|
||||
*
|
||||
* @param ctx - The execution context
|
||||
* @param outputParser - The optional output parser
|
||||
* @returns The array of connected tools
|
||||
*/
|
||||
export async function getTools(
|
||||
ctx: IExecuteFunctions,
|
||||
outputParser?: N8nOutputParser,
|
||||
): Promise<Array<DynamicStructuredTool | Tool>> {
|
||||
const tools = (await getConnectedTools(ctx, true, false)) as Array<DynamicStructuredTool | Tool>;
|
||||
|
||||
// If an output parser is available, create a dynamic tool to validate the final output.
|
||||
if (outputParser) {
|
||||
const schema = getOutputParserSchema(outputParser);
|
||||
structuredOutputParserTool = new DynamicStructuredTool({
|
||||
const structuredOutputParserTool = new DynamicStructuredTool({
|
||||
schema,
|
||||
name: 'format_final_response',
|
||||
description:
|
||||
'Always use this tool for the final output to the user. It validates the output so only use it when you are sure the output is final.',
|
||||
// We will not use the function here as we will use the parser to intercept & parse the output in the agentStepsParser
|
||||
// We do not use a function here because we intercept the output with the parser.
|
||||
func: async () => '',
|
||||
});
|
||||
|
||||
tools.push(structuredOutputParserTool);
|
||||
}
|
||||
return tools;
|
||||
}
|
||||
|
||||
const options = this.getNodeParameter('options', 0, {}) as {
|
||||
/**
|
||||
* Prepares the prompt messages for the agent.
|
||||
*
|
||||
* @param ctx - The execution context
|
||||
* @param itemIndex - The current item index
|
||||
* @param options - Options containing systemMessage and other parameters
|
||||
* @returns The array of prompt messages
|
||||
*/
|
||||
export async function prepareMessages(
|
||||
ctx: IExecuteFunctions,
|
||||
itemIndex: number,
|
||||
options: {
|
||||
systemMessage?: string;
|
||||
maxIterations?: number;
|
||||
returnIntermediateSteps?: boolean;
|
||||
};
|
||||
|
||||
const passthroughBinaryImages = this.getNodeParameter('options.passthroughBinaryImages', 0, true);
|
||||
passthroughBinaryImages?: boolean;
|
||||
outputParser?: N8nOutputParser;
|
||||
},
|
||||
): Promise<BaseMessagePromptTemplateLike[]> {
|
||||
const messages: BaseMessagePromptTemplateLike[] = [
|
||||
['system', `{system_message}${outputParser ? '\n\n{formatting_instructions}' : ''}`],
|
||||
['system', `{system_message}${options.outputParser ? '\n\n{formatting_instructions}' : ''}`],
|
||||
['placeholder', '{chat_history}'],
|
||||
['human', '{input}'],
|
||||
];
|
||||
|
||||
const hasBinaryData = this.getInputData()?.[0]?.binary !== undefined;
|
||||
if (hasBinaryData && passthroughBinaryImages) {
|
||||
const binaryMessage = await extractBinaryMessages(this);
|
||||
// If there is binary data and the node option permits it, add a binary message
|
||||
const hasBinaryData = ctx.getInputData()?.[itemIndex]?.binary !== undefined;
|
||||
if (hasBinaryData && options.passthroughBinaryImages) {
|
||||
const binaryMessage = await extractBinaryMessages(ctx, itemIndex);
|
||||
messages.push(binaryMessage);
|
||||
}
|
||||
|
||||
// We add the agent scratchpad last, so that the agent will not run in loops
|
||||
// by adding binary messages between each interaction
|
||||
messages.push(['placeholder', '{agent_scratchpad}']);
|
||||
const prompt = ChatPromptTemplate.fromMessages(messages);
|
||||
return messages;
|
||||
}
|
||||
|
||||
const agent = createToolCallingAgent({
|
||||
llm: model,
|
||||
tools,
|
||||
prompt,
|
||||
streamRunnable: false,
|
||||
});
|
||||
agent.streamRunnable = false;
|
||||
/**
|
||||
* Creates the chat prompt from messages.
|
||||
*
|
||||
* @param messages - The messages array
|
||||
* @returns The ChatPromptTemplate instance
|
||||
*/
|
||||
export function preparePrompt(messages: BaseMessagePromptTemplateLike[]): ChatPromptTemplate {
|
||||
return ChatPromptTemplate.fromMessages(messages);
|
||||
}
|
||||
|
||||
const runnableAgent = RunnableSequence.from([agent, agentStepsParser, fixEmptyContentMessage]);
|
||||
/* -----------------------------------------------------------
|
||||
Main Executor Function
|
||||
----------------------------------------------------------- */
|
||||
/**
|
||||
* The main executor method for the Tools Agent.
|
||||
*
|
||||
* This function retrieves necessary components (model, memory, tools), prepares the prompt,
|
||||
* creates the agent, and processes each input item. The error handling for each item is also
|
||||
* managed here based on the node's continueOnFail setting.
|
||||
*
|
||||
* @returns The array of execution data for all processed items
|
||||
*/
|
||||
export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
|
||||
this.logger.debug('Executing Tools Agent');
|
||||
|
||||
const executor = AgentExecutor.fromAgentAndTools({
|
||||
agent: runnableAgent,
|
||||
memory,
|
||||
tools,
|
||||
returnIntermediateSteps: options.returnIntermediateSteps === true,
|
||||
maxIterations: options.maxIterations ?? 10,
|
||||
});
|
||||
const returnData: INodeExecutionData[] = [];
|
||||
|
||||
const items = this.getInputData();
|
||||
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
|
||||
try {
|
||||
const model = await getChatModel(this);
|
||||
const memory = await getOptionalMemory(this);
|
||||
const outputParsers = await getOptionalOutputParsers(this);
|
||||
const outputParser = outputParsers?.[0];
|
||||
const tools = await getTools(this, outputParser);
|
||||
|
||||
const input = getPromptInputByType({
|
||||
ctx: this,
|
||||
i: itemIndex,
|
||||
inputKey: 'text',
|
||||
promptTypeKey: 'promptType',
|
||||
});
|
||||
|
||||
if (input === undefined) {
|
||||
throw new NodeOperationError(this.getNode(), 'The ‘text‘ parameter is empty.');
|
||||
throw new NodeOperationError(this.getNode(), 'The “text” parameter is empty.');
|
||||
}
|
||||
|
||||
const response = await executor.invoke({
|
||||
input,
|
||||
system_message: options.systemMessage ?? SYSTEM_MESSAGE,
|
||||
formatting_instructions:
|
||||
'IMPORTANT: Always call `format_final_response` to format your final response!',
|
||||
const options = this.getNodeParameter('options', itemIndex, {}) as {
|
||||
systemMessage?: string;
|
||||
maxIterations?: number;
|
||||
returnIntermediateSteps?: boolean;
|
||||
passthroughBinaryImages?: boolean;
|
||||
};
|
||||
|
||||
// Prepare the prompt messages and prompt template.
|
||||
const messages = await prepareMessages(this, itemIndex, {
|
||||
systemMessage: options.systemMessage,
|
||||
passthroughBinaryImages: options.passthroughBinaryImages ?? true,
|
||||
outputParser,
|
||||
});
|
||||
const prompt = preparePrompt(messages);
|
||||
|
||||
// Create the base agent that calls tools.
|
||||
const agent = createToolCallingAgent({
|
||||
llm: model,
|
||||
tools,
|
||||
prompt,
|
||||
streamRunnable: false,
|
||||
});
|
||||
agent.streamRunnable = false;
|
||||
// Wrap the agent with parsers and fixes.
|
||||
const runnableAgent = RunnableSequence.from([
|
||||
agent,
|
||||
getAgentStepsParser(outputParser, memory),
|
||||
fixEmptyContentMessage,
|
||||
]);
|
||||
const executor = AgentExecutor.fromAgentAndTools({
|
||||
agent: runnableAgent,
|
||||
memory,
|
||||
tools,
|
||||
returnIntermediateSteps: options.returnIntermediateSteps === true,
|
||||
maxIterations: options.maxIterations ?? 10,
|
||||
});
|
||||
|
||||
// Invoke the executor with the given input and system message.
|
||||
const response = await executor.invoke(
|
||||
{
|
||||
input,
|
||||
system_message: options.systemMessage ?? SYSTEM_MESSAGE,
|
||||
formatting_instructions:
|
||||
'IMPORTANT: Always call `format_final_response` to format your final response!',
|
||||
},
|
||||
{ signal: this.getExecutionCancelSignal() },
|
||||
);
|
||||
|
||||
// If memory and outputParser are connected, parse the output.
|
||||
if (memory && outputParser) {
|
||||
const parsedOutput = jsonParse<{ output: Record<string, unknown> }>(
|
||||
response.output as string,
|
||||
|
@ -314,7 +466,8 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
|
|||
response.output = parsedOutput?.output ?? parsedOutput;
|
||||
}
|
||||
|
||||
returnData.push({
|
||||
// Omit internal keys before returning the result.
|
||||
const itemResult = {
|
||||
json: omit(
|
||||
response,
|
||||
'system_message',
|
||||
|
@ -323,7 +476,9 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
|
|||
'chat_history',
|
||||
'agent_scratchpad',
|
||||
),
|
||||
});
|
||||
};
|
||||
|
||||
returnData.push(itemResult);
|
||||
} catch (error) {
|
||||
if (this.continueOnFail()) {
|
||||
returnData.push({
|
||||
|
@ -332,7 +487,6 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
|
|||
});
|
||||
continue;
|
||||
}
|
||||
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,273 @@
|
|||
// ToolsAgent.test.ts
|
||||
import type { BaseChatMemory } from '@langchain/community/memory/chat_memory';
|
||||
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||
import { HumanMessage } from '@langchain/core/messages';
|
||||
import type { BaseMessagePromptTemplateLike } from '@langchain/core/prompts';
|
||||
import { FakeTool } from '@langchain/core/utils/testing';
|
||||
import { Buffer } from 'buffer';
|
||||
import { mock } from 'jest-mock-extended';
|
||||
import type { ToolsAgentAction } from 'langchain/dist/agents/tool_calling/output_parser';
|
||||
import type { Tool } from 'langchain/tools';
|
||||
import type { IExecuteFunctions } from 'n8n-workflow';
|
||||
import { NodeOperationError, BINARY_ENCODING } from 'n8n-workflow';
|
||||
import type { ZodType } from 'zod';
|
||||
import { z } from 'zod';
|
||||
|
||||
import * as helpersModule from '@utils/helpers';
|
||||
import type { N8nOutputParser } from '@utils/output_parsers/N8nOutputParser';
|
||||
|
||||
import {
|
||||
getOutputParserSchema,
|
||||
extractBinaryMessages,
|
||||
fixEmptyContentMessage,
|
||||
handleParsedStepOutput,
|
||||
getChatModel,
|
||||
getOptionalMemory,
|
||||
prepareMessages,
|
||||
preparePrompt,
|
||||
getTools,
|
||||
} from '../agents/ToolsAgent/execute';
|
||||
|
||||
// We need to override the imported getConnectedTools so that we control its output.
|
||||
jest.spyOn(helpersModule, 'getConnectedTools').mockResolvedValue([FakeTool as unknown as Tool]);
|
||||
|
||||
function getFakeOutputParser(returnSchema?: ZodType): N8nOutputParser {
|
||||
const fakeOutputParser = mock<N8nOutputParser>();
|
||||
(fakeOutputParser.getSchema as jest.Mock).mockReturnValue(returnSchema);
|
||||
return fakeOutputParser;
|
||||
}
|
||||
|
||||
function createFakeExecuteFunctions(overrides: Partial<IExecuteFunctions> = {}): IExecuteFunctions {
|
||||
return {
|
||||
getNodeParameter: jest
|
||||
.fn()
|
||||
.mockImplementation((_arg1: string, _arg2: number, defaultValue?: unknown) => {
|
||||
return defaultValue;
|
||||
}),
|
||||
getNode: jest.fn().mockReturnValue({}),
|
||||
getInputConnectionData: jest.fn().mockResolvedValue({}),
|
||||
getInputData: jest.fn().mockReturnValue([]),
|
||||
continueOnFail: jest.fn().mockReturnValue(false),
|
||||
logger: { debug: jest.fn() },
|
||||
helpers: {},
|
||||
...overrides,
|
||||
} as unknown as IExecuteFunctions;
|
||||
}
|
||||
|
||||
describe('getOutputParserSchema', () => {
|
||||
it('should return a default schema if getSchema returns undefined', () => {
|
||||
const schema = getOutputParserSchema(getFakeOutputParser(undefined));
|
||||
// The default schema requires a "text" field.
|
||||
expect(() => schema.parse({})).toThrow();
|
||||
expect(schema.parse({ text: 'hello' })).toEqual({ text: 'hello' });
|
||||
});
|
||||
|
||||
it('should return the custom schema if provided', () => {
|
||||
const customSchema = z.object({ custom: z.number() });
|
||||
|
||||
const schema = getOutputParserSchema(getFakeOutputParser(customSchema));
|
||||
expect(() => schema.parse({ custom: 'not a number' })).toThrow();
|
||||
expect(schema.parse({ custom: 123 })).toEqual({ custom: 123 });
|
||||
});
|
||||
});
|
||||
|
||||
describe('extractBinaryMessages', () => {
|
||||
it('should extract a binary message from the input data when no id is provided', async () => {
|
||||
const fakeItem = {
|
||||
binary: {
|
||||
img1: {
|
||||
mimeType: 'image/png',
|
||||
// simulate that data already includes 'base64'
|
||||
data: '',
|
||||
},
|
||||
},
|
||||
};
|
||||
const ctx = createFakeExecuteFunctions({
|
||||
getInputData: jest.fn().mockReturnValue([fakeItem]),
|
||||
});
|
||||
|
||||
const humanMsg: HumanMessage = await extractBinaryMessages(ctx, 0);
|
||||
// Expect the HumanMessage's content to be an array containing one binary message.
|
||||
expect(Array.isArray(humanMsg.content)).toBe(true);
|
||||
expect(humanMsg.content[0]).toEqual({
|
||||
type: 'image_url',
|
||||
image_url: { url: '' },
|
||||
});
|
||||
});
|
||||
|
||||
it('should extract a binary message using binary stream if id is provided', async () => {
|
||||
const fakeItem = {
|
||||
binary: {
|
||||
img2: {
|
||||
mimeType: 'image/jpeg',
|
||||
id: '1234',
|
||||
data: 'nonsense',
|
||||
},
|
||||
},
|
||||
};
|
||||
// Cast fakeHelpers as any to satisfy type requirements.
|
||||
const fakeHelpers = {
|
||||
getBinaryStream: jest.fn().mockResolvedValue('stream'),
|
||||
binaryToBuffer: jest.fn().mockResolvedValue(Buffer.from('fakebufferdata')),
|
||||
} as unknown as IExecuteFunctions['helpers'];
|
||||
const ctx = createFakeExecuteFunctions({
|
||||
getInputData: jest.fn().mockReturnValue([fakeItem]),
|
||||
helpers: fakeHelpers,
|
||||
});
|
||||
|
||||
const humanMsg: HumanMessage = await extractBinaryMessages(ctx, 0);
|
||||
// eslint-disable-next-line @typescript-eslint/unbound-method
|
||||
expect(fakeHelpers.getBinaryStream).toHaveBeenCalledWith('1234');
|
||||
// eslint-disable-next-line @typescript-eslint/unbound-method
|
||||
expect(fakeHelpers.binaryToBuffer).toHaveBeenCalled();
|
||||
const expectedUrl = `data:image/jpeg;base64,${Buffer.from('fakebufferdata').toString(
|
||||
BINARY_ENCODING,
|
||||
)}`;
|
||||
expect(humanMsg.content[0]).toEqual({
|
||||
type: 'image_url',
|
||||
image_url: { url: expectedUrl },
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
describe('fixEmptyContentMessage', () => {
|
||||
it('should replace empty string inputs with empty objects', () => {
|
||||
// Cast to any to bypass type issues with AgentFinish/AgentAction.
|
||||
const fakeSteps: ToolsAgentAction[] = [
|
||||
{
|
||||
messageLog: [
|
||||
{
|
||||
content: [{ input: '' }, { input: { already: 'object' } }],
|
||||
},
|
||||
],
|
||||
},
|
||||
] as unknown as ToolsAgentAction[];
|
||||
const fixed = fixEmptyContentMessage(fakeSteps) as ToolsAgentAction[];
|
||||
const messageContent = fixed?.[0]?.messageLog?.[0].content;
|
||||
|
||||
// Type assertion needed since we're extending MessageContentComplex
|
||||
expect((messageContent?.[0] as { input: unknown })?.input).toEqual({});
|
||||
expect((messageContent?.[1] as { input: unknown })?.input).toEqual({ already: 'object' });
|
||||
});
|
||||
});
|
||||
|
||||
describe('handleParsedStepOutput', () => {
|
||||
it('should stringify the output if memory is provided', () => {
|
||||
const output = { key: 'value' };
|
||||
const fakeMemory = mock<BaseChatMemory>();
|
||||
const result = handleParsedStepOutput(output, fakeMemory);
|
||||
expect(result.returnValues).toEqual({ output: JSON.stringify(output) });
|
||||
expect(result.log).toEqual('Final response formatted');
|
||||
});
|
||||
|
||||
it('should not stringify the output if memory is not provided', () => {
|
||||
const output = { key: 'value' };
|
||||
const result = handleParsedStepOutput(output);
|
||||
expect(result.returnValues).toEqual(output);
|
||||
});
|
||||
});
|
||||
|
||||
describe('getChatModel', () => {
|
||||
it('should return the model if it is a valid chat model', async () => {
|
||||
// Cast fakeChatModel as any
|
||||
const fakeChatModel = mock<BaseChatModel>();
|
||||
fakeChatModel.bindTools = jest.fn();
|
||||
fakeChatModel.lc_namespace = ['chat_models'];
|
||||
|
||||
const ctx = createFakeExecuteFunctions({
|
||||
getInputConnectionData: jest.fn().mockResolvedValue(fakeChatModel),
|
||||
});
|
||||
const model = await getChatModel(ctx);
|
||||
expect(model).toEqual(fakeChatModel);
|
||||
});
|
||||
|
||||
it('should throw if the model is not a valid chat model', async () => {
|
||||
const fakeInvalidModel = mock<BaseChatModel>(); // missing bindTools & lc_namespace
|
||||
fakeInvalidModel.lc_namespace = [];
|
||||
const ctx = createFakeExecuteFunctions({
|
||||
getInputConnectionData: jest.fn().mockResolvedValue(fakeInvalidModel),
|
||||
getNode: jest.fn().mockReturnValue({}),
|
||||
});
|
||||
await expect(getChatModel(ctx)).rejects.toThrow(NodeOperationError);
|
||||
});
|
||||
});
|
||||
|
||||
describe('getOptionalMemory', () => {
|
||||
it('should return the memory if available', async () => {
|
||||
const fakeMemory = { some: 'memory' };
|
||||
const ctx = createFakeExecuteFunctions({
|
||||
getInputConnectionData: jest.fn().mockResolvedValue(fakeMemory),
|
||||
});
|
||||
const memory = await getOptionalMemory(ctx);
|
||||
expect(memory).toEqual(fakeMemory);
|
||||
});
|
||||
});
|
||||
|
||||
describe('getTools', () => {
|
||||
it('should retrieve tools without appending if outputParser is not provided', async () => {
|
||||
const ctx = createFakeExecuteFunctions();
|
||||
const tools = await getTools(ctx);
|
||||
|
||||
expect(tools.length).toEqual(1);
|
||||
});
|
||||
|
||||
it('should retrieve tools and append the structured output parser tool if outputParser is provided', async () => {
|
||||
const fakeOutputParser = getFakeOutputParser(z.object({ text: z.string() }));
|
||||
const ctx = createFakeExecuteFunctions();
|
||||
const tools = await getTools(ctx, fakeOutputParser);
|
||||
// Our fake getConnectedTools returns one tool; with outputParser, one extra is appended.
|
||||
expect(tools.length).toEqual(2);
|
||||
const dynamicTool = tools.find((t) => t.name === 'format_final_response');
|
||||
expect(dynamicTool).toBeDefined();
|
||||
});
|
||||
});
|
||||
|
||||
describe('prepareMessages', () => {
|
||||
it('should include a binary message if binary data is present and passthroughBinaryImages is true', async () => {
|
||||
const fakeItem = {
|
||||
binary: {
|
||||
img1: {
|
||||
mimeType: 'image/png',
|
||||
data: '',
|
||||
},
|
||||
},
|
||||
};
|
||||
const ctx = createFakeExecuteFunctions({
|
||||
getInputData: jest.fn().mockReturnValue([fakeItem]),
|
||||
});
|
||||
const messages = await prepareMessages(ctx, 0, {
|
||||
systemMessage: 'Test system',
|
||||
passthroughBinaryImages: true,
|
||||
});
|
||||
// Check if any message is an instance of HumanMessage
|
||||
const hasBinaryMessage = messages.some(
|
||||
(m) => typeof m === 'object' && m instanceof HumanMessage,
|
||||
);
|
||||
expect(hasBinaryMessage).toBe(true);
|
||||
});
|
||||
|
||||
it('should not include a binary message if no binary data is present', async () => {
|
||||
const fakeItem = { json: {} }; // no binary key
|
||||
const ctx = createFakeExecuteFunctions({
|
||||
getInputData: jest.fn().mockReturnValue([fakeItem]),
|
||||
});
|
||||
const messages = await prepareMessages(ctx, 0, {
|
||||
systemMessage: 'Test system',
|
||||
passthroughBinaryImages: true,
|
||||
});
|
||||
const hasHumanMessage = messages.some((m) => m instanceof HumanMessage);
|
||||
expect(hasHumanMessage).toBe(false);
|
||||
});
|
||||
});
|
||||
|
||||
describe('preparePrompt', () => {
|
||||
it('should return a ChatPromptTemplate instance', () => {
|
||||
const sampleMessages: BaseMessagePromptTemplateLike[] = [
|
||||
['system', 'Test'],
|
||||
['human', 'Hello'],
|
||||
];
|
||||
const prompt = preparePrompt(sampleMessages);
|
||||
|
||||
expect(prompt).toBeDefined();
|
||||
});
|
||||
});
|
|
@ -524,16 +524,16 @@ export class ChainLlm implements INodeType {
|
|||
const items = this.getInputData();
|
||||
|
||||
const returnData: INodeExecutionData[] = [];
|
||||
const llm = (await this.getInputConnectionData(
|
||||
NodeConnectionType.AiLanguageModel,
|
||||
0,
|
||||
)) as BaseLanguageModel;
|
||||
|
||||
const outputParsers = await getOptionalOutputParsers(this);
|
||||
|
||||
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
|
||||
try {
|
||||
let prompt: string;
|
||||
const llm = (await this.getInputConnectionData(
|
||||
NodeConnectionType.AiLanguageModel,
|
||||
0,
|
||||
)) as BaseLanguageModel;
|
||||
|
||||
const outputParsers = await getOptionalOutputParsers(this);
|
||||
if (this.getNode().typeVersion <= 1.3) {
|
||||
prompt = this.getNodeParameter('prompt', itemIndex) as string;
|
||||
} else {
|
||||
|
|
|
@ -163,23 +163,21 @@ export class ChainRetrievalQa implements INodeType {
|
|||
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
|
||||
this.logger.debug('Executing Retrieval QA Chain');
|
||||
|
||||
const model = (await this.getInputConnectionData(
|
||||
NodeConnectionType.AiLanguageModel,
|
||||
0,
|
||||
)) as BaseLanguageModel;
|
||||
|
||||
const retriever = (await this.getInputConnectionData(
|
||||
NodeConnectionType.AiRetriever,
|
||||
0,
|
||||
)) as BaseRetriever;
|
||||
|
||||
const items = this.getInputData();
|
||||
|
||||
const returnData: INodeExecutionData[] = [];
|
||||
|
||||
// Run for each item
|
||||
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
|
||||
try {
|
||||
const model = (await this.getInputConnectionData(
|
||||
NodeConnectionType.AiLanguageModel,
|
||||
0,
|
||||
)) as BaseLanguageModel;
|
||||
|
||||
const retriever = (await this.getInputConnectionData(
|
||||
NodeConnectionType.AiRetriever,
|
||||
0,
|
||||
)) as BaseRetriever;
|
||||
|
||||
let query;
|
||||
|
||||
if (this.getNode().typeVersion <= 1.2) {
|
||||
|
@ -226,7 +224,9 @@ export class ChainRetrievalQa implements INodeType {
|
|||
|
||||
const chain = RetrievalQAChain.fromLLM(model, retriever, chainParameters);
|
||||
|
||||
const response = await chain.withConfig(getTracingConfig(this)).invoke({ query });
|
||||
const response = await chain
|
||||
.withConfig(getTracingConfig(this))
|
||||
.invoke({ query }, { signal: this.getExecutionCancelSignal() });
|
||||
returnData.push({ json: { response } });
|
||||
} catch (error) {
|
||||
if (this.continueOnFail()) {
|
||||
|
|
|
@ -321,16 +321,16 @@ export class ChainSummarizationV2 implements INodeType {
|
|||
| 'simple'
|
||||
| 'advanced';
|
||||
|
||||
const model = (await this.getInputConnectionData(
|
||||
NodeConnectionType.AiLanguageModel,
|
||||
0,
|
||||
)) as BaseLanguageModel;
|
||||
|
||||
const items = this.getInputData();
|
||||
const returnData: INodeExecutionData[] = [];
|
||||
|
||||
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
|
||||
try {
|
||||
const model = (await this.getInputConnectionData(
|
||||
NodeConnectionType.AiLanguageModel,
|
||||
0,
|
||||
)) as BaseLanguageModel;
|
||||
|
||||
const summarizationMethodAndPrompts = this.getNodeParameter(
|
||||
'options.summarizationMethodAndPrompts.values',
|
||||
itemIndex,
|
||||
|
@ -411,9 +411,12 @@ export class ChainSummarizationV2 implements INodeType {
|
|||
}
|
||||
|
||||
const processedItem = await processor.processItem(item, itemIndex);
|
||||
const response = await chain.call({
|
||||
input_documents: processedItem,
|
||||
});
|
||||
const response = await chain.invoke(
|
||||
{
|
||||
input_documents: processedItem,
|
||||
},
|
||||
{ signal: this.getExecutionCancelSignal() },
|
||||
);
|
||||
returnData.push({ json: { response } });
|
||||
}
|
||||
} catch (error) {
|
||||
|
|
Loading…
Reference in a new issue