Merge pull request #14677 from prometheus/beorn7/histogram

promql(native histograms): Introduce exponential interpolation
This commit is contained in:
Björn Rabenstein 2024-09-19 18:08:59 +02:00 committed by GitHub
commit df9916ef66
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 337 additions and 89 deletions

View file

@ -326,45 +326,70 @@ With native histograms, aggregating everything works as usual without any `by` c
histogram_quantile(0.9, sum(rate(http_request_duration_seconds[10m])))
The `histogram_quantile()` function interpolates quantile values by
assuming a linear distribution within a bucket.
In the (common) case that a quantile value does not coincide with a bucket
boundary, the `histogram_quantile()` function interpolates the quantile value
within the bucket the quantile value falls into. For classic histograms, for
native histograms with custom bucket boundaries, and for the zero bucket of
other native histograms, it assumes a uniform distribution of observations
within the bucket (also called _linear interpolation_). For the
non-zero-buckets of native histograms with a standard exponential bucketing
schema, the interpolation is done under the assumption that the samples within
the bucket are distributed in a way that they would uniformly populate the
buckets in a hypothetical histogram with higher resolution. (This is also
called _exponential interpolation_.)
If `b` has 0 observations, `NaN` is returned. For φ < 0, `-Inf` is
returned. For φ > 1, `+Inf` is returned. For φ = `NaN`, `NaN` is returned.
The following is only relevant for classic histograms: If `b` contains
fewer than two buckets, `NaN` is returned. The highest bucket must have an
upper bound of `+Inf`. (Otherwise, `NaN` is returned.) If a quantile is located
in the highest bucket, the upper bound of the second highest bucket is
returned. A lower limit of the lowest bucket is assumed to be 0 if the upper
bound of that bucket is greater than
0. In that case, the usual linear interpolation is applied within that
bucket. Otherwise, the upper bound of the lowest bucket is returned for
quantiles located in the lowest bucket.
Special cases for classic histograms:
You can use `histogram_quantile(0, v instant-vector)` to get the estimated minimum value stored in
a histogram.
* If `b` contains fewer than two buckets, `NaN` is returned.
* The highest bucket must have an upper bound of `+Inf`. (Otherwise, `NaN` is
returned.)
* If a quantile is located in the highest bucket, the upper bound of the second
highest bucket is returned.
* The lower limit of the lowest bucket is assumed to be 0 if the upper bound of
that bucket is greater than 0. In that case, the usual linear interpolation
is applied within that bucket. Otherwise, the upper bound of the lowest
bucket is returned for quantiles located in the lowest bucket.
You can use `histogram_quantile(1, v instant-vector)` to get the estimated maximum value stored in
a histogram.
Special cases for native histograms (relevant for the exact interpolation
happening within the zero bucket):
Buckets of classic histograms are cumulative. Therefore, the following should always be the case:
* A zero bucket with finite width is assumed to contain no negative
observations if the histogram has observations in positive buckets, but none
in negative buckets.
* A zero bucket with finite width is assumed to contain no positive
observations if the histogram has observations in negative buckets, but none
in positive buckets.
* The counts in the buckets are monotonically increasing (strictly non-decreasing).
* A lack of observations between the upper limits of two consecutive buckets results in equal counts
in those two buckets.
You can use `histogram_quantile(0, v instant-vector)` to get the estimated
minimum value stored in a histogram.
However, floating point precision issues (e.g. small discrepancies introduced by computing of buckets
with `sum(rate(...))`) or invalid data might violate these assumptions. In that case,
`histogram_quantile` would be unable to return meaningful results. To mitigate the issue,
`histogram_quantile` assumes that tiny relative differences between consecutive buckets are happening
because of floating point precision errors and ignores them. (The threshold to ignore a difference
between two buckets is a trillionth (1e-12) of the sum of both buckets.) Furthermore, if there are
non-monotonic bucket counts even after this adjustment, they are increased to the value of the
previous buckets to enforce monotonicity. The latter is evidence for an actual issue with the input
data and is therefore flagged with an informational annotation reading `input to histogram_quantile
needed to be fixed for monotonicity`. If you encounter this annotation, you should find and remove
the source of the invalid data.
You can use `histogram_quantile(1, v instant-vector)` to get the estimated
maximum value stored in a histogram.
Buckets of classic histograms are cumulative. Therefore, the following should
always be the case:
* The counts in the buckets are monotonically increasing (strictly
non-decreasing).
* A lack of observations between the upper limits of two consecutive buckets
results in equal counts in those two buckets.
However, floating point precision issues (e.g. small discrepancies introduced
by computing of buckets with `sum(rate(...))`) or invalid data might violate
these assumptions. In that case, `histogram_quantile` would be unable to return
meaningful results. To mitigate the issue, `histogram_quantile` assumes that
tiny relative differences between consecutive buckets are happening because of
floating point precision errors and ignores them. (The threshold to ignore a
difference between two buckets is a trillionth (1e-12) of the sum of both
buckets.) Furthermore, if there are non-monotonic bucket counts even after this
adjustment, they are increased to the value of the previous buckets to enforce
monotonicity. The latter is evidence for an actual issue with the input data
and is therefore flagged with an informational annotation reading `input to
histogram_quantile needed to be fixed for monotonicity`. If you encounter this
annotation, you should find and remove the source of the invalid data.
## `histogram_stddev()` and `histogram_stdvar()`

View file

@ -46,9 +46,12 @@ eval instant at 1m histogram_fraction(1, 2, single_histogram)
eval instant at 1m histogram_fraction(0, 8, single_histogram)
{} 1
# Median is 1.5 due to linear estimation of the midpoint of the middle bucket, whose values are within range 1 < x <= 2.
# Median is 1.414213562373095 (2**2**-1, or sqrt(2)) due to
# exponential interpolation, i.e. the "midpoint" within range 1 < x <=
# 2 is assumed where the bucket boundary would be if we increased the
# resolution of the histogram by one step.
eval instant at 1m histogram_quantile(0.5, single_histogram)
{} 1.5
{} 1.414213562373095
clear
@ -68,8 +71,9 @@ eval instant at 5m histogram_avg(multi_histogram)
eval instant at 5m histogram_fraction(1, 2, multi_histogram)
{} 0.5
# See explanation for exponential interpolation above.
eval instant at 5m histogram_quantile(0.5, multi_histogram)
{} 1.5
{} 1.414213562373095
# Each entry should look the same as the first.
@ -85,8 +89,9 @@ eval instant at 50m histogram_avg(multi_histogram)
eval instant at 50m histogram_fraction(1, 2, multi_histogram)
{} 0.5
# See explanation for exponential interpolation above.
eval instant at 50m histogram_quantile(0.5, multi_histogram)
{} 1.5
{} 1.414213562373095
clear
@ -109,8 +114,9 @@ eval instant at 5m histogram_avg(incr_histogram)
eval instant at 5m histogram_fraction(1, 2, incr_histogram)
{} 0.6
# See explanation for exponential interpolation above.
eval instant at 5m histogram_quantile(0.5, incr_histogram)
{} 1.5
{} 1.414213562373095
eval instant at 50m incr_histogram
@ -129,16 +135,18 @@ eval instant at 50m histogram_avg(incr_histogram)
eval instant at 50m histogram_fraction(1, 2, incr_histogram)
{} 0.8571428571428571
# See explanation for exponential interpolation above.
eval instant at 50m histogram_quantile(0.5, incr_histogram)
{} 1.5
{} 1.414213562373095
# Per-second average rate of increase should be 1/(5*60) for count and buckets, then 2/(5*60) for sum.
eval instant at 50m rate(incr_histogram[10m])
{} {{count:0.0033333333333333335 sum:0.006666666666666667 offset:1 buckets:[0.0033333333333333335]}}
# Calculate the 50th percentile of observations over the last 10m.
# See explanation for exponential interpolation above.
eval instant at 50m histogram_quantile(0.5, rate(incr_histogram[10m]))
{} 1.5
{} 1.414213562373095
clear
@ -211,8 +219,9 @@ eval instant at 1m histogram_avg(negative_histogram)
eval instant at 1m histogram_fraction(-2, -1, negative_histogram)
{} 0.5
# Exponential interpolation works the same as for positive buckets, just mirrored.
eval instant at 1m histogram_quantile(0.5, negative_histogram)
{} -1.5
{} -1.414213562373095
clear
@ -233,8 +242,9 @@ eval instant at 5m histogram_avg(two_samples_histogram)
eval instant at 5m histogram_fraction(-2, -1, two_samples_histogram)
{} 0.5
# See explanation for exponential interpolation above.
eval instant at 5m histogram_quantile(0.5, two_samples_histogram)
{} -1.5
{} -1.414213562373095
clear
@ -392,20 +402,24 @@ eval_warn instant at 10m histogram_quantile(1.001, histogram_quantile_1)
eval instant at 10m histogram_quantile(1, histogram_quantile_1)
{} 16
# The following quantiles are within a bucket. Exponential
# interpolation is applied (rather than linear, as it is done for
# classic histograms), leading to slightly different quantile values.
eval instant at 10m histogram_quantile(0.99, histogram_quantile_1)
{} 15.759999999999998
{} 15.67072476139083
eval instant at 10m histogram_quantile(0.9, histogram_quantile_1)
{} 13.600000000000001
{} 12.99603834169977
eval instant at 10m histogram_quantile(0.6, histogram_quantile_1)
{} 4.799999999999997
{} 4.594793419988138
eval instant at 10m histogram_quantile(0.5, histogram_quantile_1)
{} 1.6666666666666665
{} 1.5874010519681994
# Linear interpolation within the zero bucket after all.
eval instant at 10m histogram_quantile(0.1, histogram_quantile_1)
{} 0.0006000000000000001
{} 0.0006
eval instant at 10m histogram_quantile(0, histogram_quantile_1)
{} 0
@ -425,17 +439,20 @@ eval_warn instant at 10m histogram_quantile(1.001, histogram_quantile_2)
eval instant at 10m histogram_quantile(1, histogram_quantile_2)
{} 0
# Again, the quantile values here are slightly different from what
# they would be with linear interpolation. Note that quantiles
# ending up in the zero bucket are linearly interpolated after all.
eval instant at 10m histogram_quantile(0.99, histogram_quantile_2)
{} -6.000000000000048e-05
{} -0.00006
eval instant at 10m histogram_quantile(0.9, histogram_quantile_2)
{} -0.0005999999999999996
{} -0.0006
eval instant at 10m histogram_quantile(0.5, histogram_quantile_2)
{} -1.6666666666666667
{} -1.5874010519681996
eval instant at 10m histogram_quantile(0.1, histogram_quantile_2)
{} -13.6
{} -12.996038341699768
eval instant at 10m histogram_quantile(0, histogram_quantile_2)
{} -16
@ -445,7 +462,9 @@ eval_warn instant at 10m histogram_quantile(-1, histogram_quantile_2)
clear
# Apply quantile function to histogram with both positive and negative buckets with zero bucket.
# Apply quantile function to histogram with both positive and negative
# buckets with zero bucket.
# First positive buckets with exponential interpolation.
load 10m
histogram_quantile_3 {{schema:0 count:24 sum:100 z_bucket:4 z_bucket_w:0.001 buckets:[2 3 0 1 4] n_buckets:[2 3 0 1 4]}}x1
@ -456,31 +475,34 @@ eval instant at 10m histogram_quantile(1, histogram_quantile_3)
{} 16
eval instant at 10m histogram_quantile(0.99, histogram_quantile_3)
{} 15.519999999999996
{} 15.34822590920423
eval instant at 10m histogram_quantile(0.9, histogram_quantile_3)
{} 11.200000000000003
{} 10.556063286183155
eval instant at 10m histogram_quantile(0.7, histogram_quantile_3)
{} 1.2666666666666657
{} 1.2030250360821164
# Linear interpolation in the zero bucket, symmetrically centered around
# the zero point.
eval instant at 10m histogram_quantile(0.55, histogram_quantile_3)
{} 0.0006000000000000005
{} 0.0006
eval instant at 10m histogram_quantile(0.5, histogram_quantile_3)
{} 0
eval instant at 10m histogram_quantile(0.45, histogram_quantile_3)
{} -0.0005999999999999996
{} -0.0006
# Finally negative buckets with mirrored exponential interpolation.
eval instant at 10m histogram_quantile(0.3, histogram_quantile_3)
{} -1.266666666666667
{} -1.2030250360821169
eval instant at 10m histogram_quantile(0.1, histogram_quantile_3)
{} -11.2
{} -10.556063286183155
eval instant at 10m histogram_quantile(0.01, histogram_quantile_3)
{} -15.52
{} -15.34822590920423
eval instant at 10m histogram_quantile(0, histogram_quantile_3)
{} -16
@ -490,6 +512,90 @@ eval_warn instant at 10m histogram_quantile(-1, histogram_quantile_3)
clear
# Try different schemas. (The interpolation logic must not depend on the schema.)
clear
load 1m
var_res_histogram{schema="-1"} {{schema:-1 sum:6 count:5 buckets:[0 5]}}
var_res_histogram{schema="0"} {{schema:0 sum:4 count:5 buckets:[0 5]}}
var_res_histogram{schema="+1"} {{schema:1 sum:4 count:5 buckets:[0 5]}}
eval instant at 1m histogram_quantile(0.5, var_res_histogram)
{schema="-1"} 2.0
{schema="0"} 1.4142135623730951
{schema="+1"} 1.189207
eval instant at 1m histogram_fraction(0, 2, var_res_histogram{schema="-1"})
{schema="-1"} 0.5
eval instant at 1m histogram_fraction(0, 1.4142135623730951, var_res_histogram{schema="0"})
{schema="0"} 0.5
eval instant at 1m histogram_fraction(0, 1.189207, var_res_histogram{schema="+1"})
{schema="+1"} 0.5
# The same as above, but one bucket "further to the right".
clear
load 1m
var_res_histogram{schema="-1"} {{schema:-1 sum:6 count:5 buckets:[0 0 5]}}
var_res_histogram{schema="0"} {{schema:0 sum:4 count:5 buckets:[0 0 5]}}
var_res_histogram{schema="+1"} {{schema:1 sum:4 count:5 buckets:[0 0 5]}}
eval instant at 1m histogram_quantile(0.5, var_res_histogram)
{schema="-1"} 8.0
{schema="0"} 2.82842712474619
{schema="+1"} 1.6817928305074292
eval instant at 1m histogram_fraction(0, 8, var_res_histogram{schema="-1"})
{schema="-1"} 0.5
eval instant at 1m histogram_fraction(0, 2.82842712474619, var_res_histogram{schema="0"})
{schema="0"} 0.5
eval instant at 1m histogram_fraction(0, 1.6817928305074292, var_res_histogram{schema="+1"})
{schema="+1"} 0.5
# And everything again but for negative buckets.
clear
load 1m
var_res_histogram{schema="-1"} {{schema:-1 sum:6 count:5 n_buckets:[0 5]}}
var_res_histogram{schema="0"} {{schema:0 sum:4 count:5 n_buckets:[0 5]}}
var_res_histogram{schema="+1"} {{schema:1 sum:4 count:5 n_buckets:[0 5]}}
eval instant at 1m histogram_quantile(0.5, var_res_histogram)
{schema="-1"} -2.0
{schema="0"} -1.4142135623730951
{schema="+1"} -1.189207
eval instant at 1m histogram_fraction(-2, 0, var_res_histogram{schema="-1"})
{schema="-1"} 0.5
eval instant at 1m histogram_fraction(-1.4142135623730951, 0, var_res_histogram{schema="0"})
{schema="0"} 0.5
eval instant at 1m histogram_fraction(-1.189207, 0, var_res_histogram{schema="+1"})
{schema="+1"} 0.5
clear
load 1m
var_res_histogram{schema="-1"} {{schema:-1 sum:6 count:5 n_buckets:[0 0 5]}}
var_res_histogram{schema="0"} {{schema:0 sum:4 count:5 n_buckets:[0 0 5]}}
var_res_histogram{schema="+1"} {{schema:1 sum:4 count:5 n_buckets:[0 0 5]}}
eval instant at 1m histogram_quantile(0.5, var_res_histogram)
{schema="-1"} -8.0
{schema="0"} -2.82842712474619
{schema="+1"} -1.6817928305074292
eval instant at 1m histogram_fraction(-8, 0, var_res_histogram{schema="-1"})
{schema="-1"} 0.5
eval instant at 1m histogram_fraction(-2.82842712474619, 0, var_res_histogram{schema="0"})
{schema="0"} 0.5
eval instant at 1m histogram_fraction(-1.6817928305074292, 0, var_res_histogram{schema="+1"})
{schema="+1"} 0.5
# Apply fraction function to empty histogram.
load 10m
histogram_fraction_1 {{}}x1
@ -515,11 +621,18 @@ eval instant at 10m histogram_fraction(-0.001, 0, histogram_fraction_2)
eval instant at 10m histogram_fraction(0, 0.001, histogram_fraction_2)
{} 0.16666666666666666
# Note that this result and the one above add up to 1.
eval instant at 10m histogram_fraction(0.001, inf, histogram_fraction_2)
{} 0.8333333333333334
# We are in the zero bucket, resulting in linear interpolation
eval instant at 10m histogram_fraction(0, 0.0005, histogram_fraction_2)
{} 0.08333333333333333
eval instant at 10m histogram_fraction(0.001, inf, histogram_fraction_2)
{} 0.8333333333333334
# Demonstrate that the inverse operation with histogram_quantile yields
# the original value with the non-trivial result above.
eval instant at 10m histogram_quantile(0.08333333333333333, histogram_fraction_2)
{} 0.0005
eval instant at 10m histogram_fraction(-inf, -0.001, histogram_fraction_2)
{} 0
@ -527,17 +640,30 @@ eval instant at 10m histogram_fraction(-inf, -0.001, histogram_fraction_2)
eval instant at 10m histogram_fraction(1, 2, histogram_fraction_2)
{} 0.25
# More non-trivial results with interpolation involved below, including
# some round-trips via histogram_quantile to prove that the inverse
# operation leads to the same results.
eval instant at 10m histogram_fraction(0, 1.5, histogram_fraction_2)
{} 0.4795739585136224
eval instant at 10m histogram_fraction(1.5, 2, histogram_fraction_2)
{} 0.125
{} 0.10375937481971091
eval instant at 10m histogram_fraction(1, 8, histogram_fraction_2)
{} 0.3333333333333333
eval instant at 10m histogram_fraction(0, 6, histogram_fraction_2)
{} 0.6320802083934297
eval instant at 10m histogram_quantile(0.6320802083934297, histogram_fraction_2)
{} 6
eval instant at 10m histogram_fraction(1, 6, histogram_fraction_2)
{} 0.2916666666666667
{} 0.29874687506009634
eval instant at 10m histogram_fraction(1.5, 6, histogram_fraction_2)
{} 0.16666666666666666
{} 0.15250624987980724
eval instant at 10m histogram_fraction(-2, -1, histogram_fraction_2)
{} 0
@ -600,6 +726,12 @@ eval instant at 10m histogram_fraction(0, 0.001, histogram_fraction_3)
eval instant at 10m histogram_fraction(-0.0005, 0, histogram_fraction_3)
{} 0.08333333333333333
eval instant at 10m histogram_fraction(-inf, -0.0005, histogram_fraction_3)
{} 0.9166666666666666
eval instant at 10m histogram_quantile(0.9166666666666666, histogram_fraction_3)
{} -0.0005
eval instant at 10m histogram_fraction(0.001, inf, histogram_fraction_3)
{} 0
@ -625,16 +757,22 @@ eval instant at 10m histogram_fraction(-2, -1, histogram_fraction_3)
{} 0.25
eval instant at 10m histogram_fraction(-2, -1.5, histogram_fraction_3)
{} 0.125
{} 0.10375937481971091
eval instant at 10m histogram_fraction(-8, -1, histogram_fraction_3)
{} 0.3333333333333333
eval instant at 10m histogram_fraction(-inf, -6, histogram_fraction_3)
{} 0.36791979160657035
eval instant at 10m histogram_quantile(0.36791979160657035, histogram_fraction_3)
{} -6
eval instant at 10m histogram_fraction(-6, -1, histogram_fraction_3)
{} 0.2916666666666667
{} 0.29874687506009634
eval instant at 10m histogram_fraction(-6, -1.5, histogram_fraction_3)
{} 0.16666666666666666
{} 0.15250624987980724
eval instant at 10m histogram_fraction(42, 3.1415, histogram_fraction_3)
{} 0
@ -684,6 +822,18 @@ eval instant at 10m histogram_fraction(0, 0.001, histogram_fraction_4)
eval instant at 10m histogram_fraction(-0.0005, 0.0005, histogram_fraction_4)
{} 0.08333333333333333
eval instant at 10m histogram_fraction(-inf, 0.0005, histogram_fraction_4)
{} 0.5416666666666666
eval instant at 10m histogram_quantile(0.5416666666666666, histogram_fraction_4)
{} 0.0005
eval instant at 10m histogram_fraction(-inf, -0.0005, histogram_fraction_4)
{} 0.4583333333333333
eval instant at 10m histogram_quantile(0.4583333333333333, histogram_fraction_4)
{} -0.0005
eval instant at 10m histogram_fraction(0.001, inf, histogram_fraction_4)
{} 0.4166666666666667
@ -694,31 +844,31 @@ eval instant at 10m histogram_fraction(1, 2, histogram_fraction_4)
{} 0.125
eval instant at 10m histogram_fraction(1.5, 2, histogram_fraction_4)
{} 0.0625
{} 0.051879687409855414
eval instant at 10m histogram_fraction(1, 8, histogram_fraction_4)
{} 0.16666666666666666
eval instant at 10m histogram_fraction(1, 6, histogram_fraction_4)
{} 0.14583333333333334
{} 0.14937343753004825
eval instant at 10m histogram_fraction(1.5, 6, histogram_fraction_4)
{} 0.08333333333333333
{} 0.07625312493990366
eval instant at 10m histogram_fraction(-2, -1, histogram_fraction_4)
{} 0.125
eval instant at 10m histogram_fraction(-2, -1.5, histogram_fraction_4)
{} 0.0625
{} 0.051879687409855456
eval instant at 10m histogram_fraction(-8, -1, histogram_fraction_4)
{} 0.16666666666666666
eval instant at 10m histogram_fraction(-6, -1, histogram_fraction_4)
{} 0.14583333333333334
{} 0.14937343753004817
eval instant at 10m histogram_fraction(-6, -1.5, histogram_fraction_4)
{} 0.08333333333333333
{} 0.07625312493990362
eval instant at 10m histogram_fraction(42, 3.1415, histogram_fraction_4)
{} 0

View file

@ -153,19 +153,31 @@ func bucketQuantile(q float64, buckets buckets) (float64, bool, bool) {
// histogramQuantile calculates the quantile 'q' based on the given histogram.
//
// The quantile value is interpolated assuming a linear distribution within a
// bucket.
// TODO(beorn7): Find an interpolation method that is a better fit for
// exponential buckets (and think about configurable interpolation).
// For custom buckets, the result is interpolated linearly, i.e. it is assumed
// the observations are uniformly distributed within each bucket. (This is a
// quite blunt assumption, but it is consistent with the interpolation method
// used for classic histograms so far.)
//
// For exponential buckets, the interpolation is done under the assumption that
// the samples within each bucket are distributed in a way that they would
// uniformly populate the buckets in a hypothetical histogram with higher
// resolution. For example, if the rank calculation suggests that the requested
// quantile is right in the middle of the population of the (1,2] bucket, we
// assume the quantile would be right at the bucket boundary between the two
// buckets the (1,2] bucket would be divided into if the histogram had double
// the resolution, which is 2**2**-1 = 1.4142... We call this exponential
// interpolation.
//
// However, for a quantile that ends up in the zero bucket, this method isn't
// very helpful (because there is an infinite number of buckets close to zero,
// so we would have to assume zero as the result). Therefore, we return to
// linear interpolation in the zero bucket.
//
// A natural lower bound of 0 is assumed if the histogram has only positive
// buckets. Likewise, a natural upper bound of 0 is assumed if the histogram has
// only negative buckets.
// TODO(beorn7): Come to terms if we want that.
//
// There are a number of special cases (once we have a way to report errors
// happening during evaluations of AST functions, we should report those
// explicitly):
// There are a number of special cases:
//
// If the histogram has 0 observations, NaN is returned.
//
@ -193,9 +205,9 @@ func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
rank float64
)
// if there are NaN observations in the histogram (h.Sum is NaN), use the forward iterator
// if the q < 0.5, use the forward iterator
// if the q >= 0.5, use the reverse iterator
// If there are NaN observations in the histogram (h.Sum is NaN), use the forward iterator.
// If q < 0.5, use the forward iterator.
// If q >= 0.5, use the reverse iterator.
if math.IsNaN(h.Sum) || q < 0.5 {
it = h.AllBucketIterator()
rank = q * h.Count
@ -260,8 +272,29 @@ func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
rank = count - rank
}
// TODO(codesome): Use a better estimation than linear.
return bucket.Lower + (bucket.Upper-bucket.Lower)*(rank/bucket.Count)
// The fraction of how far we are into the current bucket.
fraction := rank / bucket.Count
// Return linear interpolation for custom buckets and for quantiles that
// end up in the zero bucket.
if h.UsesCustomBuckets() || (bucket.Lower <= 0 && bucket.Upper >= 0) {
return bucket.Lower + (bucket.Upper-bucket.Lower)*fraction
}
// For exponential buckets, we interpolate on a logarithmic scale. On a
// logarithmic scale, the exponential bucket boundaries (for any schema)
// become linear (every bucket has the same width). Therefore, after
// taking the logarithm of both bucket boundaries, we can use the
// calculated fraction in the same way as for linear interpolation (see
// above). Finally, we return to the normal scale by applying the
// exponential function to the result.
logLower := math.Log2(math.Abs(bucket.Lower))
logUpper := math.Log2(math.Abs(bucket.Upper))
if bucket.Lower > 0 { // Positive bucket.
return math.Exp2(logLower + (logUpper-logLower)*fraction)
}
// Otherwise, we are in a negative bucket and have to mirror things.
return -math.Exp2(logUpper + (logLower-logUpper)*(1-fraction))
}
// histogramFraction calculates the fraction of observations between the
@ -271,8 +304,8 @@ func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
// histogramQuantile(0.9, h) returns 123.4, then histogramFraction(-Inf, 123.4, h)
// returns 0.9.
//
// The same notes (and TODOs) with regard to interpolation and assumptions about
// the zero bucket boundaries apply as for histogramQuantile.
// The same notes with regard to interpolation and assumptions about the zero
// bucket boundaries apply as for histogramQuantile.
//
// Whether either boundary is inclusive or exclusive doesnt actually matter as
// long as interpolation has to be performed anyway. In the case of a boundary
@ -310,7 +343,35 @@ func histogramFraction(lower, upper float64, h *histogram.FloatHistogram) float6
)
for it.Next() {
b := it.At()
if b.Lower < 0 && b.Upper > 0 {
zeroBucket := false
// interpolateLinearly is used for custom buckets to be
// consistent with the linear interpolation known from classic
// histograms. It is also used for the zero bucket.
interpolateLinearly := func(v float64) float64 {
return rank + b.Count*(v-b.Lower)/(b.Upper-b.Lower)
}
// interpolateExponentially is using the same exponential
// interpolation method as above for histogramQuantile. This
// method is a better fit for exponential bucketing.
interpolateExponentially := func(v float64) float64 {
var (
logLower = math.Log2(math.Abs(b.Lower))
logUpper = math.Log2(math.Abs(b.Upper))
logV = math.Log2(math.Abs(v))
fraction float64
)
if v > 0 {
fraction = (logV - logLower) / (logUpper - logLower)
} else {
fraction = 1 - ((logV - logUpper) / (logLower - logUpper))
}
return rank + b.Count*fraction
}
if b.Lower <= 0 && b.Upper >= 0 {
zeroBucket = true
switch {
case len(h.NegativeBuckets) == 0 && len(h.PositiveBuckets) > 0:
// This is the zero bucket and the histogram has only
@ -325,10 +386,12 @@ func histogramFraction(lower, upper float64, h *histogram.FloatHistogram) float6
}
}
if !lowerSet && b.Lower >= lower {
// We have hit the lower value at the lower bucket boundary.
lowerRank = rank
lowerSet = true
}
if !upperSet && b.Lower >= upper {
// We have hit the upper value at the lower bucket boundary.
upperRank = rank
upperSet = true
}
@ -336,11 +399,21 @@ func histogramFraction(lower, upper float64, h *histogram.FloatHistogram) float6
break
}
if !lowerSet && b.Lower < lower && b.Upper > lower {
lowerRank = rank + b.Count*(lower-b.Lower)/(b.Upper-b.Lower)
// The lower value is in this bucket.
if h.UsesCustomBuckets() || zeroBucket {
lowerRank = interpolateLinearly(lower)
} else {
lowerRank = interpolateExponentially(lower)
}
lowerSet = true
}
if !upperSet && b.Lower < upper && b.Upper > upper {
upperRank = rank + b.Count*(upper-b.Lower)/(b.Upper-b.Lower)
// The upper value is in this bucket.
if h.UsesCustomBuckets() || zeroBucket {
upperRank = interpolateLinearly(upper)
} else {
upperRank = interpolateExponentially(upper)
}
upperSet = true
}
if lowerSet && upperSet {