* modify unit test framework to automatically generate native histograms with custom buckets from classic histogram series
* add very basic tests for classic histogram converted into native histogram with custom bounds
* fix histogram_quantile for native histograms with custom buckets
* make loading with nhcb explicit
* evaluate native histograms with custom buckets on queries with explicit keyword
* use regex replacer
* use temp histogram struct for automatically loading converted nhcb
Signed-off-by: Jeanette Tan <jeanette.tan@grafana.com>
Signed-off-by: George Krajcsovits <krajorama@users.noreply.github.com>
This commit adds `@ <timestamp>` modifier as per this design doc: https://docs.google.com/document/d/1uSbD3T2beM-iX4-Hp7V074bzBRiRNlqUdcWP6JTDQSs/edit.
An example query:
```
rate(process_cpu_seconds_total[1m])
and
topk(7, rate(process_cpu_seconds_total[1h] @ 1234))
```
which ranks based on last 1h rate and w.r.t. unix timestamp 1234 but actually plots the 1m rate.
Signed-off-by: Ganesh Vernekar <cs15btech11018@iith.ac.in>
This makes things generally more resilient, and will
help with OpenMetrics transitions (and inconsistencies).
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Force buckets in a histogram to be monotonic for quantile estimation
The assumption that bucket counts increase monotonically with increasing
upperBound may be violated during:
* Recording rule evaluation of histogram_quantile, especially when rate()
has been applied to the underlying bucket timeseries.
* Evaluation of histogram_quantile computed over federated bucket
timeseries, especially when rate() has been applied
This is because scraped data is not made available to RR evalution or
federation atomically, so some buckets are computed with data from the N
most recent scrapes, but the other buckets are missing the most recent
observations.
Monotonicity is usually guaranteed because if a bucket with upper bound
u1 has count c1, then any bucket with a higher upper bound u > u1 must
have counted all c1 observations and perhaps more, so that c >= c1.
Randomly interspersed partial sampling breaks that guarantee, and rate()
exacerbates it. Specifically, suppose bucket le=1000 has a count of 10 from
4 samples but the bucket with le=2000 has a count of 7, from 3 samples. The
monotonicity is broken. It is exacerbated by rate() because under normal
operation, cumulative counting of buckets will cause the bucket counts to
diverge such that small differences from missing samples are not a problem.
rate() removes this divergence.)
bucketQuantile depends on that monotonicity to do a binary search for the
bucket with the qth percentile count, so breaking the monotonicity
guarantee causes bucketQuantile() to return undefined (nonsense) results.
As a somewhat hacky solution until the Prometheus project is ready to
accept the changes required to make scrapes atomic, we calculate the
"envelope" of the histogram buckets, essentially removing any decreases
in the count between successive buckets.
* Fix up comment docs for ensureMonotonic
* ensureMonotonic: Use switch statement
Use switch statement rather than if/else for better readability.
Process the most frequent cases first.