* *: remove use of golang.org/x/net/context
Signed-off-by: Simon Pasquier <spasquie@redhat.com>
* scrape: fix TestTargetScrapeScrapeCancel
Signed-off-by: Simon Pasquier <spasquie@redhat.com>
* Limit the number of samples remote read can return.
- Return 413 entity too large.
- Limit can be set be a flag. Allow 0 to mean no limit.
- Include limit in error message.
- Set default limit to 50M (* 16 bytes = 800MB).
Signed-off-by: Tom Wilkie <tom.wilkie@gmail.com>
There are many more (mostly finalizers like Close/Stop/etc.), but most of
the others seemed like one couldn't do much about them anyway.
Signed-off-by: Julius Volz <julius.volz@gmail.com>
* Allow for BufferedSeriesIterator instances to be created without an underlying iterator, to simplify their usage.
Signed-off-by: Alin Sinpalean <alin.sinpalean@gmail.com>
* Add Start/End to SelectParams
* Make remote read use the new selectParams for start/end
This commit will continue sending the start/end time of the remote read
query as the overarching promql time and the specific range of data that
the query is intersted in receiving a response to is now part of the
ReadHints (upstream discussion in #4226).
* Remove unused vendored code
The genproto.sh script was updated, but the code wasn't regenerated.
This simply removes the vendored deps that are no longer part of the
codegen output.
Signed-off-by: Thomas Jackson <jacksontj.89@gmail.com>
Fixes#4254
NaNs don't equal themselves, so a duplicate NaN would
always hit the break statement and never get popped.
We should not be returning multiple data point for the same
timestamp, so don't compare values at all.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
This commit fixes a denial-of-service issue of the remote
read endpoint. It limits the size of the POST request body
to 32 MB such that clients cannot write arbitrary amounts
of data to the server memory.
Fixes#4238
Signed-off-by: Andreas Auernhammer <aead@mail.de>
* Move range logic to 'eval'
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make aggregegate range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* PromQL is statically typed, so don't eval to find the type.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Extend rangewrapper to multiple exprs
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Start making function evaluation ranged
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make instant queries a special case of range queries
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Eliminate evalString
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Evaluate range vector functions one series at a time
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make unary operators range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make binops range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Pass time to range-aware functions.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make simple _over_time functions range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Reduce allocs when working with matrix selectors
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Add basic benchmark for range evaluation
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Reuse objects for function arguments
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Do dropmetricname and allocating output vector only once.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Add range-aware support for range vector functions with params
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Optimise holt_winters, cut cpu and allocs by ~25%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make rate&friends range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make more functions range aware. Document calling convention.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make date functions range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make simple math functions range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Convert more functions to be range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make more functions range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Specialcase timestamp() with vector selector arg for range awareness
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Remove transition code for functions
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Remove the rest of the engine transition code
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Remove more obselete code
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Remove the last uses of the eval* functions
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Remove engine finalizers to prevent corruption
The finalizers set by matrixSelector were being called
just before the value they were retruning to the pool
was then being provided to the caller. Thus a concurrent query
could corrupt the data that the user has just been returned.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Add new benchmark suite for range functinos
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Migrate existing benchmarks to new system
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Expand promql benchmarks
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Simply test by removing unused range code
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* When testing instant queries, check range queries too.
To protect against subsequent steps in a range query being
affected by the previous steps, add a test that evaluates
an instant query that we know works again as a range query
with the tiimestamp we care about not being the first step.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Reuse ring for matrix iters. Put query results back in pool.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Reuse buffer when iterating over matrix selectors
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Unary minus should remove metric name
Cut down benchmarks for faster runs.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Reduce repetition in benchmark test cases
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Work series by series when doing normal vectorSelectors
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Optimise benchmark setup, cuts time by 60%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Have rangeWrapper use an evalNodeHelper to cache across steps
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Use evalNodeHelper with functions
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Cache dropMetricName within a node evaluation.
This saves both the calculations and allocs done by dropMetricName
across steps.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Reuse input vectors in rangewrapper
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Reuse the point slices in the matrixes input/output by rangeWrapper
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make benchmark setup faster using AddFast
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Simplify benchmark code.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Add caching in VectorBinop
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Use xor to have one-level resultMetric hash key
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Add more benchmarks
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Call Query.Close in apiv1
This allows point slices allocated for the response data
to be reused by later queries, saving allocations.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Optimise histogram_quantile
It's now 5-10% faster with 97% less garbage generated for 1k steps
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make the input collection in rangeVector linear rather than quadratic
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Optimise label_replace, for 1k steps 15x fewer allocs and 3x faster
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Optimise label_join, 1.8x faster and 11x less memory for 1k steps
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Expand benchmarks, cleanup comments, simplify numSteps logic.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Address Fabian's comments
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Comments from Alin.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Address jrv's comments
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Remove dead code
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Address Simon's comments.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Rename populateIterators, pre-init some sizes
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Handle case where function has non-matrix args first
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Split rangeWrapper out to rangeEval function, improve comments
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Cleanup and make things more consistent
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make EvalNodeHelper public
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Fabian's comments.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
More than one remote_write destination can be configured, in which
case it's essential to know which one each log message refers to.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
This adds a parameter to the storage selection interface which allows
query engine(s) to pass information about the operations surrounding a
data selection.
This can for example be used by remote storage backends to infer the
correct downsampling aggregates that need to be provided.
* refactor: move targetGroup struct and CheckOverflow() to their own package
* refactor: move auth and security related structs to a utility package, fix import error in utility package
* refactor: Azure SD, remove SD struct from config
* refactor: DNS SD, remove SD struct from config into dns package
* refactor: ec2 SD, move SD struct from config into the ec2 package
* refactor: file SD, move SD struct from config to file discovery package
* refactor: gce, move SD struct from config to gce discovery package
* refactor: move HTTPClientConfig and URL into util/config, fix import error in httputil
* refactor: consul, move SD struct from config into consul discovery package
* refactor: marathon, move SD struct from config into marathon discovery package
* refactor: triton, move SD struct from config to triton discovery package, fix test
* refactor: zookeeper, move SD structs from config to zookeeper discovery package
* refactor: openstack, remove SD struct from config, move into openstack discovery package
* refactor: kubernetes, move SD struct from config into kubernetes discovery package
* refactor: notifier, use targetgroup package instead of config
* refactor: tests for file, marathon, triton SD - use targetgroup package instead of config.TargetGroup
* refactor: retrieval, use targetgroup package instead of config.TargetGroup
* refactor: storage, use config util package
* refactor: discovery manager, use targetgroup package instead of config.TargetGroup
* refactor: use HTTPClient and TLS config from configUtil instead of config
* refactor: tests, use targetgroup package instead of config.TargetGroup
* refactor: fix tagetgroup.Group pointers that were removed by mistake
* refactor: openstack, kubernetes: drop prefixes
* refactor: remove import aliases forced due to vscode bug
* refactor: move main SD struct out of config into discovery/config
* refactor: rename configUtil to config_util
* refactor: rename yamlUtil to yaml_config
* refactor: kubernetes, remove prefixes
* refactor: move the TargetGroup package to discovery/
* refactor: fix order of imports
Federation makes use of dedupedSeriesSet to merge SeriesSets for every
query into one output stream. If many match[] arguments are provided,
many dedupedSeriesSet objects will get chained. This has the downside of
causing a potential O(n*k) running time, where n is the number of series
and k the number of match[] arguments.
In the mean time, the storage package provides a mergeSeriesSet that
accomplishes the same with an O(n*log(k)) running time by making use of
a binary heap. Let's just get rid of dedupedSeriesSet and change all
existing callers to use mergeSeriesSet.
For special remote read endpoints which have only data for specific
queries, it is desired to limit the number of queries sent to the
configured remote read endpoint to reduce latency and performance
overhead.
* Decouple remote client from ReadRecent feature.
* Separate remote read filter into a small, testable function.
* Use storage.Queryable interface to compose independent
functionalities.
In order to compose different querier implementations more easily, this
change introduces a separate storage.Queryable interface grouping the
query (Querier) function of the storage.
Furthermore, it adds a QueryableFunc type to ease writing very simple
queryable implementations.
The labelsets returned from remote read are mutated in higher levels
(like seriesFilter.Labels()) and since the concreteSeriesSet didn't
return a copy, the external mutation affected the labelset in the
concreteSeries itself. This resulted in bizarre bugs where local and
remote series would show with identical label sets in the UI, but not be
deduplicated, since internally, a series might come to look like:
{__name__="node_load5", instance="192.168.1.202:12090", job="node_exporter", node="odroid", node="odroid"}
(note the repetition of the last label)
* Fast path the merge querier such that it is completely removed from query path when there is no remote storage.
* Add NoopQuerier
* Add copyright notice.
* Avoid global, use a function.
If the user accidentally sets the max block duration smaller than the min,
the current error is not informative. This change just performs the check
earlier and improves the error message.
staticcheck fails with:
storage/remote/read_test.go:199:27: do not pass a nil Context, even if a function permits it; pass context.TODO if you are unsure about which Context to use (SA1012)
Currently all read queries are simply pushed to remote read clients.
This is fine, except for remote storage for wich it unefficient and
make query slower even if remote read is unnecessary.
So we need instead to compare the oldest timestamp in primary/local
storage with the query range lower boundary. If the oldest timestamp
is older than the mint parameter, then there is no need for remote read.
This is an optionnal behavior per remote read client.
Signed-off-by: Thibault Chataigner <t.chataigner@criteo.com>
Instead, just make the anchoring part of the internal regex. This helps because
some users will want to read back the `Value` field and expect it to be the
same as the input value (e.g. some tests in Cortex), or use the value in
another context which is already expected to add its own anchoring, leading to
superfluous double anchoring (such as when we translate matchers into remote
read request matchers).
* Re-add contexts to storage.Storage.Querier()
These are needed when replacing the storage by a multi-tenant
implementation where the tenant is stored in the context.
The 1.x query interfaces already had contexts, but they got lost in 2.x.
* Convert promql.Engine to use native contexts
This can happen in the situation where the system scales up the number of shards massively (to deal with some backlog), then scales it down again as the number of samples sent during the time period is less than the number received.
* Fix error where we look into the future.
So currently we are adding values that are in the future for an older
timestamp. For example, if we have [(1, 1), (150, 2)] we will end up
showing [(1, 1), (2,2)].
Further it is not advisable to call .At() after Next() returns false.
Signed-off-by: Goutham Veeramachaneni <cs14btech11014@iith.ac.in>
* Retuen early if done
Signed-off-by: Goutham Veeramachaneni <cs14btech11014@iith.ac.in>
* Handle Seek() where we reach the end of iterator
Signed-off-by: Goutham Veeramachaneni <cs14btech11014@iith.ac.in>
* Simplify code
Signed-off-by: Goutham Veeramachaneni <cs14btech11014@iith.ac.in>
This is in line with the v1.5 change in paradigm to not keep
chunk.Descs without chunks around after a series maintenance.
It's mainly motivated by avoiding excessive amounts of RAM usage
during crash recovery.
The code avoids to create memory time series with zero chunk.Descs as
that is prone to trigger weird effects. (Series maintenance would
archive series with zero chunk.Descs, but we cannot do that here
because the archive indices still have to be checked.)
The fpIter was kind of cumbersome to use and required a lock for each
iteration (which wasn't even needed for the iteration at startup after
loading the checkpoint).
The new implementation here has an obvious penalty in memory, but it's
only 8 byte per series, so 80MiB for a beefy server with 10M memory
time series (which would probably need ~100GiB RAM, so the memory
penalty is only 0.1% of the total memory need).
The big advantage is that now series maintenance happens in order,
which leads to the time between two maintenances of the same series
being less random. Ideally, after each maintenance, the next
maintenance would tackle the series with the largest number of
non-persisted chunks. That would be quite an effort to find out or
track, but with the approach here, the next maintenance will tackle
the series whose previous maintenance is longest ago, which is a good
approximation.
While this commit won't change the _average_ number of chunks
persisted per maintenance, it will reduce the mean time a given chunk
has to wait for its persistence and thus reduce the steady-state
number of chunks waiting for persistence.
Also, the map iteration in Go is non-deterministic but not truly
random. In practice, the iteration appears to be somewhat "bucketed".
You can often observe a bunch of series with similar duration since
their last maintenance, i.e. you see batches of series with similar
number of chunks persisted per maintenance. If that batch is
relatively young, a whole lot of series are maintained with very few
chunks to persist. (See screenshot in PR for a better explanation.)
This is a fairly easy attempt to dynamically evict chunks based on the
heap size. A target heap size has to be set as a command line flage,
so that users can essentially say "utilize 4GiB of RAM, and please
don't OOM".
The -storage.local.max-chunks-to-persist and
-storage.local.memory-chunks flags are deprecated by this
change. Backwards compatibility is provided by ignoring
-storage.local.max-chunks-to-persist and use
-storage.local.memory-chunks to set the new
-storage.local.target-heap-size to a reasonable (and conservative)
value (both with a warning).
This also makes the metrics intstrumentation more consistent (in
naming and implementation) and cleans up a few quirks in the tests.
Answers to anticipated comments:
There is a chance that Go 1.9 will allow programs better control over
the Go memory management. I don't expect those changes to be in
contradiction with the approach here, but I do expect them to
complement them and allow them to be more precise and controlled. In
any case, once those Go changes are available, this code has to be
revisted.
One might be tempted to let the user specify an estimated value for
the RSS usage, and then internall set a target heap size of a certain
fraction of that. (In my experience, 2/3 is a fairly safe bet.)
However, investigations have shown that RSS size and its relation to
the heap size is really really complicated. It depends on so many
factors that I wouldn't even start listing them in a commit
description. It depends on many circumstances and not at least on the
risk trade-off of each individual user between RAM utilization and
probability of OOMing during a RAM usage peak. To not add even more to
the confusion, we need to stick to the well-defined number we also use
in the targeting here, the sum of the sizes of heap objects.
Currently, if a series stops to exist, its head chunk will be kept
open for an hour. That prevents it from being persisted. Which
prevents it from being evicted. Which prevents the series from being
archived.
Most of the time, once no sample has been added to a series within the
staleness limit, we can be pretty confident that this series will not
receive samples anymore. The whole chain as described above can be
started after 5m instead of 1h. In the relaxed case, this doesn't
change a lot as the head chunk timeout is only checked during series
maintenance, and usually, a series is only maintained every six
hours. However, there is the typical scenario where a large service is
deployed, the deoply turns out to be bad, and then it is deployed
again within minutes, and quite quickly the number of time series has
tripled. That's the point where the Prometheus server is stressed and
switches (rightfully) into rushed mode. In that mode, time series are
processed as quickly as possible, but all of that is in vein if all of
those recently ended time series cannot be persisted yet for another
hour. In that scenario, this change will help most, and it's exactly
the scenario where help is most desperately needed.
Each remote write endpoint gets its own set of relabeling rules.
This is based on the (yet-to-be-merged)
https://github.com/prometheus/prometheus/pull/2419, which removes legacy
remote write implementations.
This removes legacy support for specific remote storage systems in favor
of only offering the generic remote write protocol. An example bridge
application that translates from the generic protocol to each of those
legacy backends is still provided at:
documentation/examples/remote_storage/remote_storage_bridge
See also https://github.com/prometheus/prometheus/issues/10
The next step in the plan is to re-add support for multiple remote
storages.
This is another corner-case that was previously never exercised
because the rewriting of a series file was never prevented by the
shrink ratio.
Scenario: There is an existing series on disk, which is archived. If a
new sample comes in for that file, a new chunk in memory is created,
and the chunkDescsOffset is set to -1. If series maintenance happens
before the series has at least one chunk to persist _and_ an
insufficient chunks on disk is old enough for purging (so that the
shrink ratio kicks in), dropAndPersistChunks would return 0, but it
should return the chunk length of the series file.
Also, in that code path, set chunkDescsOffset to 0 rather than -1 in
case of "dropped more chunks from persistence than from memory" so
that no other weird things happen before the series is quarantined for
good.
The append call may reuse cds, and thus change its len.
(In practice, this wouldn't happen as cds should have len==cap.
Still, the previous order of lines was problematic.)
This decreases checkpoint size by not checkpointing things
that don't actually need checkpointing.
This is fully compatible with the v2 checkpoint format,
as it makes series appear as though the only chunksdescs
in memory are those that need persisting.
With this change the scraping caches series references and only
allocates label sets if it has to retrieve a new reference.
pkg/textparse is used to do the conditional parsing and reduce
allocations from 900B/sample to 0 in the general case.
Add metrics around checkpointing and persistence
* Add a metric to say if checkpointing is happening,
and another to track total checkpoint time and count.
This breaks the existing prometheus_local_storage_checkpoint_duration_seconds
by renaming it to prometheus_local_storage_checkpoint_last_duration_seconds
as the former name is more appropriate for a summary.
* Add metric for last checkpoint size.
* Add metric for series/chunks processed by checkpoints.
For long checkpoints it'd be useful to see how they're progressing.
* Add metric for dirty series
* Add metric for number of chunks persisted per series.
You can get the number of chunks from chunk_ops,
but not the matching number of series. This helps determine
the size of the writes being made.
* Add metric for chunks queued for persistence
Chunks created includes both chunks that'll need persistence
and chunks read in for queries. This only includes chunks created
for persistence.
* Code review comments on new persistence metrics.
When a large Prometheus starts up fresh it can take many minutes
to warmup and clear out the index queue. A larger queue means less
blocking, bigger batches and cuts down startup time by ~50%.