This is not a verbatim implementation of the Gorilla encoding. First
of all, it could not, even if we wanted, because Prometheus has a
different chunking model (constant size, not constant time). Second,
this adds a number of changes that improve the encoding in general or
at least for the specific use case of Prometheus (and are partially
only possible in the context of Prometheus). See comments in the code
for details.
Only return an error where callers are doing something with it except
simply logging and ignoring.
All the errors touched in this commit flag the storage as dirty
anyway, and that fact is logged anyway. So most of what is being
removed here is just log spam.
As discussed earlier, the class of errors that flags the storage as
dirty signals fundamental corruption, no even bubbling up a one-time
warning to the user (e.g. about incomplete results) isn't helping much
because _anything_ happening in the storage has to be doubted from
that point on (and in fact retroactively into the past, too). Flagging
the storage dirty, and alerting on it (plus marking the state in the
web UI) is the only way I can see right now.
As a byproduct, I cleaned up the setDirty method a bit and improved
the logged errors.
For one, remove unneeded methods.
Then, instead of using a channel for all values, use a
bufio.Scanner-like interface. This removes the need for creating a
goroutine and avoids the (unnecessary) locking performed by channel
sending and receiving.
This will make it much easier to write new chunk implementations (like
Gorilla-style encoding).
This requires all the panic calls upon unexpected data to be converted
into errors returned. This pollute the function signatures quite
lot. Well, this is Go...
The ideas behind this are the following:
- panic only if it's a programming error. Data corruptions happen, and
they are not programming errors.
- If we detect a data corruption, we "quarantine" the series,
essentially removing it from the database and putting its data into
a separate directory for forensics.
- Failure during writing to a series file is not considered corruption
automatically. It will call setDirty, though, so that a
crashrecovery upon the next restart will commence and check for
that.
- Series quarantining and setDirty calls are logged and counted in
metrics, but are hidden from the user of the interfaces in
interface.go, whith the notable exception of Append(). The reasoning
is that we treat corruption by removing the corrupted series, i.e. a
query for it will return no results on its next call anyway, so
return no results right now. In the case of Append(), we want to
tell the user that no data has been appended, though.
Minor side effects:
- Now consistently using filepath.* instead of path.*.
- Introduced structured logging where I touched it. This makes things
less consistent, but a complete change to structured logging would
be out of scope for this PR.
If only very few chunks are to be truncated from a very large series
file, the rewrite of the file is a lorge overhead. With this change, a
certain ratio of the file has to be dropped to make it happen. While
only causing disk overhead at about the same ratio (by default 10%),
it will cut down I/O by a lot in above scenario.
If all samples in consecutive chunks have the same timestamp, the way
we used to load chunks will fail. With this change, the persist
watermark is used to load the right amount of chunkDescs from disk.
This bug is a possible reason for the rare storage corruption we have
observed.
Fixes https://github.com/prometheus/prometheus/issues/481
While doing so, clean up and fix a few other things:
- Fix `go vet` warnings (@fabxc to blame ;).
- Fix a racey problem with unarchiving: Whenever we unarchive a
series, we essentially want to do something with it. However, until
we have done something with it, it appears like a series that is
ready to be archived or even purged. So e.g. it would be ignored
during checkpointing. With this fix, we always load the chunkDescs
upon unarchiving. This is wasteful if we only want to add a new
sample to an archived time series, but the (presumably more common)
case where we access an archived time series in a query doesn't
become more expensive.
- The change above streamlined the getOrCreateSeries ond
newMemorySeries flow. Also, the modTime is now always set correctly.
- Fix the leveldb-backed implementation of KeyValueStore.Delete. It
had the wrong behavior of still returning true, nil if a
non-existing key has been passed in.
A number of mostly minor things:
- Rename chunk type -> chunk encoding.
- After all, do not carry around the chunk encoding to all parts of
the system, but just have one place where the encoding for new
chunks is set based on the flag. The new approach has caveats as
well, but the polution of so many method signatures is worse.
- Use the default chunk encoding for new chunks of existing
series. (Previously, only new _series_ would get chunks with the
default encoding.)
- Use an enum for chunk encoding. (But keep the version number for the
flag, for reasons discussed previously.)
- Add encoding() to the chunk interface (so that a chunk knows its own
encoding - no need to have that in a different top-level function).
- Got rid of newFollowUpChunk (which would keep the existing encoding
for all chunks of a time series). Now only use newChunk(), which
will create a chunk encoding according to the flag.
- Simplified transcodeAndAdd.
- Reordered methods of deltaEncodedChunk and doubleDeltaEncoded chunk
to match the order in the chunk interface.
- Only transcode if the chunk is not yet half full. If more than half
full, add a new chunk instead.
In that commit, the 'maintainSeries' call was accidentally removed.
This commit refactors things a bit so that there is now a clean
'maintainMemorySeries' and a 'maintainArchivedSeries' call.
Straighten the nomenclature a bit (consistently use 'drop' for
chunks and 'purge' for series/metrics).
Remove the annoying 'Completed maintenance sweep through archived
fingerprints' message if there were no archived fingerprints to do
maintenance on.
This is done by bucketing chunks by fingerprint. If the persisting to
disk falls behind, more and more chunks are in the queue. As soon as
there are "double hits", we will now persist both chunks in one go,
doubling the disk throughput (assuming it is limited by disk
seeks). Should even more pile up so that we end wit "triple hits", we
will persist those first, and so on.
Even if we have millions of time series, this will still help,
assuming not all of them are growing with the same speed. Series that
get many samples and/or are not very compressable will accumulate
chunks faster, and they will soon get double- or triple-writes.
To improve the chance of double writes,
-storage.local.persistence-queue-capacity could be set to a higher
value. However, that will slow down shutdown a lot (as the queue has
to be worked through). So we leave it to the user to set it to a
really high value. A more fundamental solution would be to checkpoint
not only head chunks, but also chunks still in the persist queue. That
would be quite complicated for a rather limited use-case (running many
time series with high ingestion rate on slow spinning disks).
- Move CONTRIBUTORS.md to the more common AUTHORS.
- Added the required NOTICE file.
- Changed "Prometheus Team" to "The Prometheus Authors".
- Reverted the erroneous changes to the Apache License.
Now only purge if there is something to purge.
Also, set savedFirstTime and archived time range appropriately.
(Which is needed for the optimization.)
Change-Id: Idcd33319a84def3ce0318d886f10c6800369e7f9
Fix the behavior if preload for non-existent series is requested.
Instead of returning an error (which triggers a panic further up),
simply count those incidents. They can happen regularly, we just want
to know if they happen too frequently because that would mean the
indexing is behind or broken.
Change-Id: I4b2d1b93c4146eeea897d188063cb9574a270f8b
The root cause was that after chunkDesc eviction, the offset between
memory representation of chunk layout (via chunkDescs in memory) was
shiftet against chunks as layed out on disk. Keeping the offset up to
date is by no means trivial, so this commit is pretty involved.
Also, found a race that for some reason didn't bite us so far:
Persisting chunks was completel unlocked, so if chunks were purged on
disk at the same time, disaster would strike. However, locking the
persisting of chunk revealed interesting dead locks. Basically, never
queue under the fp lock.
Change-Id: I1ea9e4e71024cabbc1f9601b28e74db0c5c55db8
- Staleness delta is no a proper function parameter and not replicated
from package ast.
- Named type 'chunks' replaced by explicit '[]chunk' to avoid confusion.
- For the same reason, replaced 'chunkDescs' by '[]*chunkDescs'.
- Verified that math.Modf is not a speed enhancement over conversion
(actually 5x slower).
- Renamed firstTimeField, lastTimeField into chunkFirstTime and
chunkLastTime.
- Verified unpin() is sufficiently goroutine-safe.
- Decided not to update archivedFingerprintToTimeRange upon series
truncation and added a rationale why.
Change-Id: I863b8d785e5ad9f71eb63e229845eacf1bed8534
Some other improvements on the way, in particular codec -> codable
renaming and addition of LookupSet methods.
Change-Id: I978f8f3f84ca8e4d39a9d9f152ae0ad274bbf4e2
Large delta values often imply a difference between a large base value
and the large delta value, potentially resulting in small numbers with
a huge precision error. Since large delta values need 8 bytes anyway,
we are not even saving memory.
As a solution, always save the absoluto value rather than a delta once
8 bytes would be needed for the delta. Timestamps are then saved as 8
byte integers, while values are always saved as float64 in that case.
Change-Id: I01100d600515e16df58ce508b50982ffd762cc49