Too confusing to have `MetadataList` and `ListMetadata`, etc.
I standardised on the ones which are in an interface.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
* web/api: optimize labelnames/values with 1 set of matchers
If there is exactly one set of matchers provided, we can skip adding
the results to a map and getting them back out again.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
---------
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
With this commit we make it possible to adjust the request headers sent
to Prometheus by the codemirror-promql extension. This enables
customizing the headers sent, without re-implementing the Prometheus
client completely.
Signed-off-by: Jacob Baungard Hansen <jacobbaungard@redhat.com>
* Show group interval in Rules display
Signed-off-by: Danny Kopping <danny.kopping@grafana.com>
* Humanise interval
Signed-off-by: Danny Kopping <danny.kopping@grafana.com>
---------
Signed-off-by: Danny Kopping <danny.kopping@grafana.com>
Add unit tests for Web API's query endpoint (GET/POST).
Also modify the endpoint handler to use context.WithDeadline instead of
context.WithTimeout, so the deadline is deterministic for the tests.
Signed-off-by: Arve Knudsen <arve.knudsen@gmail.com>
Return annotations (warnings and infos) from PromQL queries
This generalizes the warnings we have already used before (but only for problems with remote read) as "annotations".
Annotations can be warnings or infos (the latter could be false positives). We do not treat them different in the API for now and return them all as "warnings". It would be easy to distinguish them and return infos separately, should that appear useful in the future.
The new annotations are then used to create a lot of warnings or infos during PromQL evaluations. Partially these are things we have wanted for a long time (e.g. inform the user that they have applied `rate` to a metric that doesn't look like a counter), but the new native histograms have created even more needs for those annotations (e.g. if a query tries to aggregate float numbers with histograms).
The annotations added here are not yet complete. A prominent example would be a warning about a range too short for a rate calculation. But such a warnings is more tricky to create with good fidelity and we will tackle it later.
Another TODO is to take annotations into account when evaluating recording rules.
---------
Signed-off-by: Jeanette Tan <jeanette.tan@grafana.com>
* Move /targets page discovered labels to expandable section
The current tooltip for showing the pre-relabeling discovered labels for a
target is notoriously unreliable and can get cut off when there are many
labels. This PR introduces a (hopefully unobtuse enough) expander/collapser
button for the discovered labels of each target, and then the discovered labels
are shown in a more persistent way underneath the final target labels, instead
of using a tooltip.
Fixes https://github.com/prometheus/prometheus/issues/9175#issuecomment-1713074341
Signed-off-by: Julius Volz <julius.volz@gmail.com>
* Remove obsolete test snapshot
Signed-off-by: Julius Volz <julius.volz@gmail.com>
---------
Signed-off-by: Julius Volz <julius.volz@gmail.com>
This commit adds the option --include-workspace-root in ui_release.sh
npm scripts in order to also include the version in web/ui/pagkage jsons
files when bumping the version. This also avoids issues when building
directly with npm install on some systems.
Signed-off-by: Daniel Mellado <dmellado@redhat.com>
So far, `ValidateHistogram` would not detect if the count did not
include the count in the zero bucket. This commit fixes the problem
and updates all the tests that have been undetected offenders so far.
Note that this problem would only ever create false negatives, so we
never falsely rejected to store a histogram because of it.
On the other hand, `ValidateFloatHistogram` has been to strict with
the count being at least as large as the sum of the counts in all the
buckets. Float precision issues could create false positives here, see
products of PromQL evaluations, it's actually quite hard to put an
upper limit no the floating point imprecision. Users could produce the
weirdest expressions, maxing out float precision problems. Therefore,
this commit simply removes that particular check from
`ValidateFloatHistogram`.
Signed-off-by: beorn7 <beorn@grafana.com>
It's possible (quite common on Kubernetes) to have a service discovery
return thousands of targets then drop most of them in relabel rules.
The main place this data is used is to display in the web UI, where
you don't want thousands of lines of display.
The new limit is `keep_dropped_targets`, which defaults to 0
for backwards-compatibility.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
* Add OTLP Ingestion endpoint
We copy files from the otel-collector-contrib. See the README in
`storage/remote/otlptranslator/README.md`.
This supersedes: https://github.com/prometheus/prometheus/pull/11965
Signed-off-by: gouthamve <gouthamve@gmail.com>
* Return a 200 OK
It is what the OTEL Golang SDK expect :(
https://github.com/open-telemetry/opentelemetry-go/issues/4363
Signed-off-by: Goutham <gouthamve@gmail.com>
---------
Signed-off-by: gouthamve <gouthamve@gmail.com>
Signed-off-by: Goutham <gouthamve@gmail.com>
Native histograms without a zero threshold aren't federated properly.
This adds a test to prove the specific failure mode, which is that
histograms with a zero threshold of zero are federated as classic
histograms.
The underlying reason is that the protobuf parser identifies a native
histogram by detecting a zero bucket or by detecting integer buckets.
Therefore, a float histogram with a zero threshold of zero and an
unpopulated zero bucket falls through the cracks (no integer buckets,
no zero bucket).
This commit also addse a test case for the latter.
Signed-off-by: beorn7 <beorn@grafana.com>
Convert QueryOpts to an interface so that downstream projects like
https://github.com/thanos-community/promql-engine could extend the query
options with engine specific options that are not in the original
engine.
Will be used to enable query analysis per-query.
Signed-off-by: Giedrius Statkevičius <giedrius.statkevicius@vinted.com>
So far, if a target exposes a histogram with both classic and native
buckets, a native-histogram enabled Prometheus would ignore the
classic buckets. With the new scrape config option
`scrape_classic_histograms` set, both buckets will be ingested,
creating all the series of a classic histogram in parallel to the
native histogram series. For example, a histogram `foo` would create a
native histogram series `foo` and classic series called `foo_sum`,
`foo_count`, and `foo_bucket`.
This feature can be used in a migration strategy from classic to
native histograms, where it is desired to have a transition period
during which both native and classic histograms are present.
Note that two bugs in classic histogram parsing were found and fixed
as a byproduct of testing the new feature:
1. Series created from classic _gauge_ histograms didn't get the
_sum/_count/_bucket prefix set.
2. Values of classic _float_ histograms weren't parsed properly.
Signed-off-by: beorn7 <beorn@grafana.com>
Wiser coders than myself have come to the conclusion that a `switch`
statement is almost always superior to a statement that includes any
`else if`.
The exceptions that I have found in our codebase are just these two:
* The `if else` is followed by an additional statement before the next
condition (separated by a `;`).
* The whole thing is within a `for` loop and `break` statements are
used. In this case, using `switch` would require tagging the `for`
loop, which probably tips the balance.
Why are `switch` statements more readable?
For one, fewer curly braces. But more importantly, the conditions all
have the same alignment, so the whole thing follows the natural flow
of going down a list of conditions. With `else if`, in contrast, all
conditions but the first are "hidden" behind `} else if `, harder to
spot and (for no good reason) presented differently from the first
condition.
I'm sure the aforemention wise coders can list even more reasons.
In any case, I like it so much that I have found myself recommending
it in code reviews. I would like to make it a habit in our code base,
without making it a hard requirement that we would test on the CI. But
for that, there has to be a role model, so this commit eliminates all
`if else` occurrences, unless it is autogenerated code or fits one of
the exceptions above.
Signed-off-by: beorn7 <beorn@grafana.com>
We haven't updated golint-ci in our CI yet, but this commit prepares
for that.
There are a lot of new warnings, and it is mostly because the "revive"
linter got updated. I agree with most of the new warnings, mostly
around not naming unused function parameters (although it is justified
in some cases for documentation purposes – while things like mocks are
a good example where not naming the parameter is clearer).
I'm pretty upset about the "empty block" warning to include `for`
loops. It's such a common pattern to do something in the head of the
`for` loop and then have an empty block. There is still an open issue
about this: https://github.com/mgechev/revive/issues/810 I have
disabled "revive" altogether in files where empty blocks are used
excessively, and I have made the effort to add individual
`// nolint:revive` where empty blocks are used just once or twice.
It's borderline noisy, though, but let's go with it for now.
I should mention that none of the "empty block" warnings for `for`
loop bodies were legitimate.
Signed-off-by: beorn7 <beorn@grafana.com>
Introduces support for a new query parameter in the `/rules` API endpoint that allows filtering by rule names.
If all the rules of a group are filtered, we skip the group entirely.
Signed-off-by: gotjosh <josue.abreu@gmail.com>
In the past, every sample value was a float, so it was fine to call a
variable holding such a float "value" or "sample". With native
histograms, a sample might have a histogram value. And a histogram
value is still a value. Calling a float value just "value" or "sample"
or "V" is therefore misleading. Over the last few commits, I already
renamed many variables, but this cleans up a few more places where the
changes are more invasive.
Note that we do not to attempt naming in the JSON APIs or in the
protobufs. That would be quite a disruption. However, internally, we
can call variables as we want, and we should go with the option of
avoiding misunderstandings.
Signed-off-by: beorn7 <beorn@grafana.com>
Previously, we had one “polymorphous” `sample` type in the `storage`
package. This commit breaks it up into `fSample`, `hSample`, and
`fhSample`, each still implementing the `tsdbutil.Sample` interface.
This reduces allocations in `sampleRing.Add` but inflicts the penalty
of the interface wrapper, which makes things worse in total.
This commit therefore just demonstrates the step taken. The next
commit will tackle the interface overhead problem.
Signed-off-by: beorn7 <beorn@grafana.com>
In other words: Instead of having a “polymorphous” `Point` that can
either contain a float value or a histogram value, use an `FPoint` for
floats and an `HPoint` for histograms.
This seemingly small change has a _lot_ of repercussions throughout
the codebase.
The idea here is to avoid the increase in size of `Point` arrays that
happened after native histograms had been added.
The higher-level data structures (`Sample`, `Series`, etc.) are still
“polymorphous”. The same idea could be applied to them, but at each
step the trade-offs needed to be evaluated.
The idea with this change is to do the minimum necessary to get back
to pre-histogram performance for functions that do not touch
histograms. Here are comparisons for the `changes` function. The test
data doesn't include histograms yet. Ideally, there would be no change
in the benchmark result at all.
First runtime v2.39 compared to directly prior to this commit:
```
name old time/op new time/op delta
RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 542µs ± 1% +38.58% (p=0.000 n=9+8)
RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 617µs ± 2% +36.48% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.36ms ± 2% +21.58% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 8.94ms ± 1% +14.21% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.30ms ± 1% +10.67% (p=0.000 n=9+10)
RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.10ms ± 1% +11.82% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 11.8ms ± 1% +12.50% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 87.4ms ± 1% +12.63% (p=0.000 n=9+9)
RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 32.8ms ± 1% +8.01% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.6ms ± 2% +9.64% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 117ms ± 1% +11.69% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 876ms ± 1% +11.83% (p=0.000 n=9+10)
```
And then runtime v2.39 compared to after this commit:
```
name old time/op new time/op delta
RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 547µs ± 1% +39.84% (p=0.000 n=9+8)
RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 616µs ± 2% +36.15% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.26ms ± 1% +12.20% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 7.95ms ± 1% +1.59% (p=0.000 n=10+8)
RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.38ms ± 2% +13.49% (p=0.000 n=9+10)
RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.02ms ± 1% +9.80% (p=0.000 n=10+9)
RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 10.8ms ± 1% +3.08% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 78.1ms ± 1% +0.58% (p=0.035 n=9+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 33.5ms ± 4% +10.18% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.0ms ± 1% +7.98% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 107ms ± 1% +1.92% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 775ms ± 1% -1.02% (p=0.019 n=9+9)
```
In summary, the runtime doesn't really improve with this change for
queries with just a few steps. For queries with many steps, this
commit essentially reinstates the old performance. This is good
because the many-step queries are the one that matter most (longest
absolute runtime).
In terms of allocations, though, this commit doesn't make a dent at
all (numbers not shown). The reason is that most of the allocations
happen in the sampleRingIterator (in the storage package), which has
to be addressed in a separate commit.
Signed-off-by: beorn7 <beorn@grafana.com>