prometheus/storage/local/doubledelta.go
beorn7 c13b1ecfe9 Make chunk iterators more DRY
This finally extracts all the common code of the two chunk iterators
into one. Any future chunk encodings with fast access by index can use
the same iterator by simply providing an indexAccessor. Other future
chunk encodings without fast index access (like Gorilla-style) can
still implement the chunkIterator interface as usual.
2016-03-07 20:23:14 +01:00

510 lines
15 KiB
Go

// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package local
import (
"encoding/binary"
"fmt"
"io"
"math"
"github.com/prometheus/common/model"
)
// The 37-byte header of a delta-encoded chunk looks like:
//
// - used buf bytes: 2 bytes
// - time double-delta bytes: 1 bytes
// - value double-delta bytes: 1 bytes
// - is integer: 1 byte
// - base time: 8 bytes
// - base value: 8 bytes
// - base time delta: 8 bytes
// - base value delta: 8 bytes
const (
doubleDeltaHeaderBytes = 37
doubleDeltaHeaderBufLenOffset = 0
doubleDeltaHeaderTimeBytesOffset = 2
doubleDeltaHeaderValueBytesOffset = 3
doubleDeltaHeaderIsIntOffset = 4
doubleDeltaHeaderBaseTimeOffset = 5
doubleDeltaHeaderBaseValueOffset = 13
doubleDeltaHeaderBaseTimeDeltaOffset = 21
doubleDeltaHeaderBaseValueDeltaOffset = 29
)
// A doubleDeltaEncodedChunk adaptively stores sample timestamps and values with
// a double-delta encoding of various types (int, float) and bit widths. A base
// value and timestamp and a base delta for each is saved in the header. The
// payload consists of double-deltas, i.e. deviations from the values and
// timestamps calculated by applying the base value and time and the base deltas.
// However, once 8 bytes would be needed to encode a double-delta value, a
// fall-back to the absolute numbers happens (so that timestamps are saved
// directly as int64 and values as float64).
// doubleDeltaEncodedChunk implements the chunk interface.
type doubleDeltaEncodedChunk []byte
// newDoubleDeltaEncodedChunk returns a newly allocated doubleDeltaEncodedChunk.
func newDoubleDeltaEncodedChunk(tb, vb deltaBytes, isInt bool, length int) *doubleDeltaEncodedChunk {
if tb < 1 {
panic("need at least 1 time delta byte")
}
if length < doubleDeltaHeaderBytes+16 {
panic(fmt.Errorf(
"chunk length %d bytes is insufficient, need at least %d",
length, doubleDeltaHeaderBytes+16,
))
}
c := make(doubleDeltaEncodedChunk, doubleDeltaHeaderIsIntOffset+1, length)
c[doubleDeltaHeaderTimeBytesOffset] = byte(tb)
c[doubleDeltaHeaderValueBytesOffset] = byte(vb)
if vb < d8 && isInt { // Only use int for fewer than 8 value double-delta bytes.
c[doubleDeltaHeaderIsIntOffset] = 1
} else {
c[doubleDeltaHeaderIsIntOffset] = 0
}
return &c
}
// add implements chunk.
func (c doubleDeltaEncodedChunk) add(s model.SamplePair) ([]chunk, error) {
if c.len() == 0 {
return c.addFirstSample(s), nil
}
tb := c.timeBytes()
vb := c.valueBytes()
if c.len() == 1 {
return c.addSecondSample(s, tb, vb)
}
remainingBytes := cap(c) - len(c)
sampleSize := c.sampleSize()
// Do we generally have space for another sample in this chunk? If not,
// overflow into a new one.
if remainingBytes < sampleSize {
overflowChunks, err := newChunk().add(s)
if err != nil {
return nil, err
}
return []chunk{&c, overflowChunks[0]}, nil
}
projectedTime := c.baseTime() + model.Time(c.len())*c.baseTimeDelta()
ddt := s.Timestamp - projectedTime
projectedValue := c.baseValue() + model.SampleValue(c.len())*c.baseValueDelta()
ddv := s.Value - projectedValue
ntb, nvb, nInt := tb, vb, c.isInt()
// If the new sample is incompatible with the current encoding, reencode the
// existing chunk data into new chunk(s).
if c.isInt() && !isInt64(ddv) {
// int->float.
nvb = d4
nInt = false
} else if !c.isInt() && vb == d4 && projectedValue+model.SampleValue(float32(ddv)) != s.Value {
// float32->float64.
nvb = d8
} else {
if tb < d8 {
// Maybe more bytes for timestamp.
ntb = max(tb, bytesNeededForSignedTimestampDelta(ddt))
}
if c.isInt() && vb < d8 {
// Maybe more bytes for sample value.
nvb = max(vb, bytesNeededForIntegerSampleValueDelta(ddv))
}
}
if tb != ntb || vb != nvb || c.isInt() != nInt {
if len(c)*2 < cap(c) {
return transcodeAndAdd(newDoubleDeltaEncodedChunk(ntb, nvb, nInt, cap(c)), &c, s)
}
// Chunk is already half full. Better create a new one and save the transcoding efforts.
overflowChunks, err := newChunk().add(s)
if err != nil {
return nil, err
}
return []chunk{&c, overflowChunks[0]}, nil
}
offset := len(c)
c = c[:offset+sampleSize]
switch tb {
case d1:
c[offset] = byte(ddt)
case d2:
binary.LittleEndian.PutUint16(c[offset:], uint16(ddt))
case d4:
binary.LittleEndian.PutUint32(c[offset:], uint32(ddt))
case d8:
// Store the absolute value (no delta) in case of d8.
binary.LittleEndian.PutUint64(c[offset:], uint64(s.Timestamp))
default:
return nil, fmt.Errorf("invalid number of bytes for time delta: %d", tb)
}
offset += int(tb)
if c.isInt() {
switch vb {
case d0:
// No-op. Constant delta is stored as base value.
case d1:
c[offset] = byte(int8(ddv))
case d2:
binary.LittleEndian.PutUint16(c[offset:], uint16(int16(ddv)))
case d4:
binary.LittleEndian.PutUint32(c[offset:], uint32(int32(ddv)))
// d8 must not happen. Those samples are encoded as float64.
default:
return nil, fmt.Errorf("invalid number of bytes for integer delta: %d", vb)
}
} else {
switch vb {
case d4:
binary.LittleEndian.PutUint32(c[offset:], math.Float32bits(float32(ddv)))
case d8:
// Store the absolute value (no delta) in case of d8.
binary.LittleEndian.PutUint64(c[offset:], math.Float64bits(float64(s.Value)))
default:
return nil, fmt.Errorf("invalid number of bytes for floating point delta: %d", vb)
}
}
return []chunk{&c}, nil
}
// clone implements chunk.
func (c doubleDeltaEncodedChunk) clone() chunk {
clone := make(doubleDeltaEncodedChunk, len(c), cap(c))
copy(clone, c)
return &clone
}
// firstTime implements chunk.
func (c doubleDeltaEncodedChunk) firstTime() model.Time {
return c.baseTime()
}
// newIterator implements chunk.
func (c *doubleDeltaEncodedChunk) newIterator() chunkIterator {
return newIndexAccessingChunkIterator(c.len(), &doubleDeltaEncodedIndexAccessor{
c: *c,
baseT: c.baseTime(),
baseΔT: c.baseTimeDelta(),
baseV: c.baseValue(),
baseΔV: c.baseValueDelta(),
tBytes: c.timeBytes(),
vBytes: c.valueBytes(),
isInt: c.isInt(),
})
}
// marshal implements chunk.
func (c doubleDeltaEncodedChunk) marshal(w io.Writer) error {
if len(c) > math.MaxUint16 {
panic("chunk buffer length would overflow a 16 bit uint")
}
binary.LittleEndian.PutUint16(c[doubleDeltaHeaderBufLenOffset:], uint16(len(c)))
n, err := w.Write(c[:cap(c)])
if err != nil {
return err
}
if n != cap(c) {
return fmt.Errorf("wanted to write %d bytes, wrote %d", cap(c), n)
}
return nil
}
// marshalToBuf implements chunk.
func (c doubleDeltaEncodedChunk) marshalToBuf(buf []byte) error {
if len(c) > math.MaxUint16 {
panic("chunk buffer length would overflow a 16 bit uint")
}
binary.LittleEndian.PutUint16(c[doubleDeltaHeaderBufLenOffset:], uint16(len(c)))
n := copy(buf, c)
if n != len(c) {
return fmt.Errorf("wanted to copy %d bytes to buffer, copied %d", len(c), n)
}
return nil
}
// unmarshal implements chunk.
func (c *doubleDeltaEncodedChunk) unmarshal(r io.Reader) error {
*c = (*c)[:cap(*c)]
if _, err := io.ReadFull(r, *c); err != nil {
return err
}
l := binary.LittleEndian.Uint16((*c)[doubleDeltaHeaderBufLenOffset:])
if int(l) > cap(*c) {
return fmt.Errorf("chunk length exceeded during unmarshaling: %d", l)
}
*c = (*c)[:l]
return nil
}
// unmarshalFromBuf implements chunk.
func (c *doubleDeltaEncodedChunk) unmarshalFromBuf(buf []byte) error {
*c = (*c)[:cap(*c)]
copy(*c, buf)
l := binary.LittleEndian.Uint16((*c)[doubleDeltaHeaderBufLenOffset:])
if int(l) > cap(*c) {
return fmt.Errorf("chunk length exceeded during unmarshaling: %d", l)
}
*c = (*c)[:l]
return nil
}
// encoding implements chunk.
func (c doubleDeltaEncodedChunk) encoding() chunkEncoding { return doubleDelta }
func (c doubleDeltaEncodedChunk) baseTime() model.Time {
return model.Time(
binary.LittleEndian.Uint64(
c[doubleDeltaHeaderBaseTimeOffset:],
),
)
}
func (c doubleDeltaEncodedChunk) baseValue() model.SampleValue {
return model.SampleValue(
math.Float64frombits(
binary.LittleEndian.Uint64(
c[doubleDeltaHeaderBaseValueOffset:],
),
),
)
}
func (c doubleDeltaEncodedChunk) baseTimeDelta() model.Time {
if len(c) < doubleDeltaHeaderBaseTimeDeltaOffset+8 {
return 0
}
return model.Time(
binary.LittleEndian.Uint64(
c[doubleDeltaHeaderBaseTimeDeltaOffset:],
),
)
}
func (c doubleDeltaEncodedChunk) baseValueDelta() model.SampleValue {
if len(c) < doubleDeltaHeaderBaseValueDeltaOffset+8 {
return 0
}
return model.SampleValue(
math.Float64frombits(
binary.LittleEndian.Uint64(
c[doubleDeltaHeaderBaseValueDeltaOffset:],
),
),
)
}
func (c doubleDeltaEncodedChunk) timeBytes() deltaBytes {
return deltaBytes(c[doubleDeltaHeaderTimeBytesOffset])
}
func (c doubleDeltaEncodedChunk) valueBytes() deltaBytes {
return deltaBytes(c[doubleDeltaHeaderValueBytesOffset])
}
func (c doubleDeltaEncodedChunk) sampleSize() int {
return int(c.timeBytes() + c.valueBytes())
}
func (c doubleDeltaEncodedChunk) len() int {
if len(c) <= doubleDeltaHeaderIsIntOffset+1 {
return 0
}
if len(c) <= doubleDeltaHeaderBaseValueOffset+8 {
return 1
}
return (len(c)-doubleDeltaHeaderBytes)/c.sampleSize() + 2
}
func (c doubleDeltaEncodedChunk) isInt() bool {
return c[doubleDeltaHeaderIsIntOffset] == 1
}
// addFirstSample is a helper method only used by c.add(). It adds timestamp and
// value as base time and value.
func (c doubleDeltaEncodedChunk) addFirstSample(s model.SamplePair) []chunk {
c = c[:doubleDeltaHeaderBaseValueOffset+8]
binary.LittleEndian.PutUint64(
c[doubleDeltaHeaderBaseTimeOffset:],
uint64(s.Timestamp),
)
binary.LittleEndian.PutUint64(
c[doubleDeltaHeaderBaseValueOffset:],
math.Float64bits(float64(s.Value)),
)
return []chunk{&c}
}
// addSecondSample is a helper method only used by c.add(). It calculates the
// base delta from the provided sample and adds it to the chunk.
func (c doubleDeltaEncodedChunk) addSecondSample(s model.SamplePair, tb, vb deltaBytes) ([]chunk, error) {
baseTimeDelta := s.Timestamp - c.baseTime()
if baseTimeDelta < 0 {
return nil, fmt.Errorf("base time delta is less than zero: %v", baseTimeDelta)
}
c = c[:doubleDeltaHeaderBytes]
if tb >= d8 || bytesNeededForUnsignedTimestampDelta(baseTimeDelta) >= d8 {
// If already the base delta needs d8 (or we are at d8
// already, anyway), we better encode this timestamp
// directly rather than as a delta and switch everything
// to d8.
c[doubleDeltaHeaderTimeBytesOffset] = byte(d8)
binary.LittleEndian.PutUint64(
c[doubleDeltaHeaderBaseTimeDeltaOffset:],
uint64(s.Timestamp),
)
} else {
binary.LittleEndian.PutUint64(
c[doubleDeltaHeaderBaseTimeDeltaOffset:],
uint64(baseTimeDelta),
)
}
baseValue := c.baseValue()
baseValueDelta := s.Value - baseValue
if vb >= d8 || baseValue+baseValueDelta != s.Value {
// If we can't reproduce the original sample value (or
// if we are at d8 already, anyway), we better encode
// this value directly rather than as a delta and switch
// everything to d8.
c[doubleDeltaHeaderValueBytesOffset] = byte(d8)
c[doubleDeltaHeaderIsIntOffset] = 0
binary.LittleEndian.PutUint64(
c[doubleDeltaHeaderBaseValueDeltaOffset:],
math.Float64bits(float64(s.Value)),
)
} else {
binary.LittleEndian.PutUint64(
c[doubleDeltaHeaderBaseValueDeltaOffset:],
math.Float64bits(float64(baseValueDelta)),
)
}
return []chunk{&c}, nil
}
// doubleDeltaEncodedIndexAccessor implements indexAccessor.
type doubleDeltaEncodedIndexAccessor struct {
c doubleDeltaEncodedChunk
baseT, baseΔT model.Time
baseV, baseΔV model.SampleValue
tBytes, vBytes deltaBytes
isInt bool
lastErr error
}
func (acc *doubleDeltaEncodedIndexAccessor) err() error {
return acc.lastErr
}
func (acc *doubleDeltaEncodedIndexAccessor) timestampAtIndex(idx int) model.Time {
if idx == 0 {
return acc.baseT
}
if idx == 1 {
// If time bytes are at d8, the time is saved directly rather
// than as a difference.
if acc.tBytes == d8 {
return acc.baseΔT
}
return acc.baseT + acc.baseΔT
}
offset := doubleDeltaHeaderBytes + (idx-2)*int(acc.tBytes+acc.vBytes)
switch acc.tBytes {
case d1:
return acc.baseT +
model.Time(idx)*acc.baseΔT +
model.Time(int8(acc.c[offset]))
case d2:
return acc.baseT +
model.Time(idx)*acc.baseΔT +
model.Time(int16(binary.LittleEndian.Uint16(acc.c[offset:])))
case d4:
return acc.baseT +
model.Time(idx)*acc.baseΔT +
model.Time(int32(binary.LittleEndian.Uint32(acc.c[offset:])))
case d8:
// Take absolute value for d8.
return model.Time(binary.LittleEndian.Uint64(acc.c[offset:]))
default:
acc.lastErr = fmt.Errorf("invalid number of bytes for time delta: %d", acc.tBytes)
}
return model.Earliest
}
func (acc *doubleDeltaEncodedIndexAccessor) sampleValueAtIndex(idx int) model.SampleValue {
if idx == 0 {
return acc.baseV
}
if idx == 1 {
// If value bytes are at d8, the value is saved directly rather
// than as a difference.
if acc.vBytes == d8 {
return acc.baseΔV
}
return acc.baseV + acc.baseΔV
}
offset := doubleDeltaHeaderBytes + (idx-2)*int(acc.tBytes+acc.vBytes) + int(acc.tBytes)
if acc.isInt {
switch acc.vBytes {
case d0:
return acc.baseV +
model.SampleValue(idx)*acc.baseΔV
case d1:
return acc.baseV +
model.SampleValue(idx)*acc.baseΔV +
model.SampleValue(int8(acc.c[offset]))
case d2:
return acc.baseV +
model.SampleValue(idx)*acc.baseΔV +
model.SampleValue(int16(binary.LittleEndian.Uint16(acc.c[offset:])))
case d4:
return acc.baseV +
model.SampleValue(idx)*acc.baseΔV +
model.SampleValue(int32(binary.LittleEndian.Uint32(acc.c[offset:])))
// No d8 for ints.
default:
acc.lastErr = fmt.Errorf("invalid number of bytes for integer delta: %d", acc.vBytes)
}
} else {
switch acc.vBytes {
case d4:
return acc.baseV +
model.SampleValue(idx)*acc.baseΔV +
model.SampleValue(math.Float32frombits(binary.LittleEndian.Uint32(acc.c[offset:])))
case d8:
// Take absolute value for d8.
return model.SampleValue(math.Float64frombits(binary.LittleEndian.Uint64(acc.c[offset:])))
default:
acc.lastErr = fmt.Errorf("invalid number of bytes for floating point delta: %d", acc.vBytes)
}
}
return 0
}