zxing/csharp/common/reedsolomon/GF256Poly.cs
srowen 7854d30103 Committed C# port from Mohamad
git-svn-id: https://zxing.googlecode.com/svn/trunk@817 59b500cc-1b3d-0410-9834-0bbf25fbcc57
2009-01-08 17:02:40 +00:00

274 lines
10 KiB
C#
Executable file

/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Text;
namespace com.google.zxing.common.reedsolomon
{
/// <summary> <p>Represents a polynomial whose coefficients are elements of GF(256).
/// Instances of this class are immutable.</p>
///
/// <p>Much credit is due to William Rucklidge since portions of this code are an indirect
/// port of his C++ Reed-Solomon implementation.</p>
///
/// </summary>
/// <author> srowen@google.com (Sean Owen)
/// </author>
public sealed class GF256Poly
{
private GF256 field;
private int[] coefficients;
/**
* @param field the {@link GF256} instance representing the field to use
* to perform computations
* @param coefficients coefficients as ints representing elements of GF(256), arranged
* from most significant (highest-power term) coefficient to least significant
* @throws ArgumentException if argument is null or empty,
* or if leading coefficient is 0 and this is not a
* constant polynomial (that is, it is not the monomial "0")
*/
public GF256Poly(GF256 field, int[] coefficients) {
if (coefficients == null || coefficients.Length == 0) {
throw new ArgumentException();
}
this.field = field;
int coefficientsLength = coefficients.Length;
if (coefficientsLength > 1 && coefficients[0] == 0) {
// Leading term must be non-zero for anything except the constant polynomial "0"
int firstNonZero = 1;
while (firstNonZero < coefficientsLength && coefficients[firstNonZero] == 0) {
firstNonZero++;
}
if (firstNonZero == coefficientsLength) {
this.coefficients = field.getZero().coefficients;
} else {
this.coefficients = new int[coefficientsLength - firstNonZero];
System.Array.Copy(coefficients,firstNonZero,this.coefficients,0,this.coefficients.Length);
}
} else {
this.coefficients = coefficients;
}
}
public int[] getCoefficients()
{
return coefficients;
}
/**
* @return degree of this polynomial
*/
public int getDegree()
{
return coefficients.Length - 1;
}
/**
* @return true iff this polynomial is the monomial "0"
*/
public bool isZero()
{
return coefficients[0] == 0;
}
/**
* @return coefficient of x^degree term in this polynomial
*/
public int getCoefficient(int degree)
{
return coefficients[coefficients.Length - 1 - degree];
}
/**
* @return evaluation of this polynomial at a given point
*/
public int evaluateAt(int a)
{
if (a == 0) {
// Just return the x^0 coefficient
return getCoefficient(0);
}
int size = coefficients.Length;
int result = 0;
if (a == 1) {
// Just the sum of the coefficients
result = 0;
for (int i = 0; i < size; i++) {
result = GF256.addOrSubtract(result, coefficients[i]);
}
return result;
}
result = coefficients[0];
for (int i = 1; i < size; i++) {
result = GF256.addOrSubtract(field.multiply(a, result), coefficients[i]);
}
return result;
}
public GF256Poly addOrSubtract(GF256Poly other)
{
if (!field.Equals(other.field)) {
throw new ArgumentException("GF256Polys do not have same GF256 field");
}
if (isZero()) {
return other;
}
if (other.isZero()) {
return this;
}
int[] smallerCoefficients = this.coefficients;
int[] largerCoefficients = other.coefficients;
if (smallerCoefficients.Length > largerCoefficients.Length) {
int[] temp = smallerCoefficients;
smallerCoefficients = largerCoefficients;
largerCoefficients = temp;
}
int[] sumDiff = new int[largerCoefficients.Length];
int lengthDiff = largerCoefficients.Length - smallerCoefficients.Length;
// Copy high-order terms only found in higher-degree polynomial's coefficients
System.Array.Copy(largerCoefficients, 0, sumDiff, 0, lengthDiff);
for (int i = lengthDiff; i < largerCoefficients.Length; i++) {
sumDiff[i] = GF256.addOrSubtract(smallerCoefficients[i - lengthDiff], largerCoefficients[i]);
}
return new GF256Poly(field, sumDiff);
}
public GF256Poly multiply(GF256Poly other)
{
if (!field.Equals(other.field)) {
throw new ArgumentException("GF256Polys do not have same GF256 field");
}
if (isZero() || other.isZero()) {
return field.getZero();
}
int[] aCoefficients = this.coefficients;
int aLength = aCoefficients.Length;
int[] bCoefficients = other.coefficients;
int bLength = bCoefficients.Length;
int[] product = new int[aLength + bLength - 1];
for (int i = 0; i < aLength; i++) {
int aCoeff = aCoefficients[i];
for (int j = 0; j < bLength; j++) {
product[i + j] = GF256.addOrSubtract(product[i + j],
field.multiply(aCoeff, bCoefficients[j]));
}
}
return new GF256Poly(field, product);
}
public GF256Poly multiply(int scalar)
{
if (scalar == 0) {
return field.getZero();
}
if (scalar == 1) {
return this;
}
int size = coefficients.Length;
int[] product = new int[size];
for (int i = 0; i < size; i++) {
product[i] = field.multiply(coefficients[i], scalar);
}
return new GF256Poly(field, product);
}
public GF256Poly multiplyByMonomial(int degree, int coefficient)
{
if (degree < 0) {
throw new ArgumentException();
}
if (coefficient == 0) {
return field.getZero();
}
int size = coefficients.Length;
int[] product = new int[size + degree];
for (int i = 0; i < size; i++) {
product[i] = field.multiply(coefficients[i], coefficient);
}
return new GF256Poly(field, product);
}
public GF256Poly[] divide(GF256Poly other)
{
if (!field.Equals(other.field)) {
throw new ArgumentException("GF256Polys do not have same GF256 field");
}
if (other.isZero()) {
throw new ArgumentException("Divide by 0");
}
GF256Poly quotient = field.getZero();
GF256Poly remainder = this;
int denominatorLeadingTerm = other.getCoefficient(other.getDegree());
int inverseDenominatorLeadingTerm = field.inverse(denominatorLeadingTerm);
while (remainder.getDegree() >= other.getDegree() && !remainder.isZero()) {
int degreeDifference = remainder.getDegree() - other.getDegree();
int scale = field.multiply(remainder.getCoefficient(remainder.getDegree()), inverseDenominatorLeadingTerm);
GF256Poly term = other.multiplyByMonomial(degreeDifference, scale);
GF256Poly iterationQuotient = field.buildMonomial(degreeDifference, scale);
quotient = quotient.addOrSubtract(iterationQuotient);
remainder = remainder.addOrSubtract(term);
}
return new GF256Poly[] { quotient, remainder };
}
public String toString() {
StringBuilder result = new StringBuilder(8 * getDegree());
for (int degree = getDegree(); degree >= 0; degree--) {
int coefficient = getCoefficient(degree);
if (coefficient != 0) {
if (coefficient < 0) {
result.Append(" - ");
coefficient = -coefficient;
} else {
if (result.Length > 0) {
result.Append(" + ");
}
}
if (degree == 0 || coefficient != 1) {
int alphaPower = field.log(coefficient);
if (alphaPower == 0) {
result.Append('1');
} else if (alphaPower == 1) {
result.Append('a');
} else {
result.Append("a^");
result.Append(alphaPower);
}
}
if (degree != 0) {
if (degree == 1) {
result.Append('x');
} else {
result.Append("x^");
result.Append(degree);
}
}
}
}
return result.ToString();
}
}
}