n8n/packages/@n8n/nodes-langchain/nodes/chains/ChainRetrievalQA/ChainRetrievalQa.node.ts

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

241 lines
6 KiB
TypeScript
Raw Normal View History

import type { BaseLanguageModel } from '@langchain/core/language_models/base';
import {
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
PromptTemplate,
} from '@langchain/core/prompts';
import type { BaseRetriever } from '@langchain/core/retrievers';
import { RetrievalQAChain } from 'langchain/chains';
import {
NodeConnectionType,
type IExecuteFunctions,
type INodeExecutionData,
type INodeType,
type INodeTypeDescription,
NodeOperationError,
} from 'n8n-workflow';
import { promptTypeOptions, textFromPreviousNode } from '@utils/descriptions';
import { getPromptInputByType, isChatInstance } from '@utils/helpers';
import { getTemplateNoticeField } from '@utils/sharedFields';
import { getTracingConfig } from '@utils/tracing';
const SYSTEM_PROMPT_TEMPLATE = `Use the following pieces of context to answer the users question.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
----------------
{context}`;
export class ChainRetrievalQa implements INodeType {
description: INodeTypeDescription = {
displayName: 'Question and Answer Chain',
name: 'chainRetrievalQa',
icon: 'fa:link',
group: ['transform'],
version: [1, 1.1, 1.2, 1.3, 1.4],
description: 'Answer questions about retrieved documents',
defaults: {
name: 'Question and Answer Chain',
color: '#909298',
},
codex: {
alias: ['LangChain'],
categories: ['AI'],
subcategories: {
AI: ['Chains', 'Root Nodes'],
},
resources: {
primaryDocumentation: [
{
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainretrievalqa/',
},
],
},
},
// eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node
inputs: [
NodeConnectionType.Main,
{
displayName: 'Model',
maxConnections: 1,
type: NodeConnectionType.AiLanguageModel,
required: true,
},
{
displayName: 'Retriever',
maxConnections: 1,
type: NodeConnectionType.AiRetriever,
required: true,
},
],
outputs: [NodeConnectionType.Main],
credentials: [],
properties: [
getTemplateNoticeField(1960),
{
displayName: 'Query',
name: 'query',
type: 'string',
required: true,
default: '={{ $json.input }}',
displayOptions: {
show: {
'@version': [1],
},
},
},
{
displayName: 'Query',
name: 'query',
type: 'string',
required: true,
default: '={{ $json.chat_input }}',
displayOptions: {
show: {
'@version': [1.1],
},
},
},
{
displayName: 'Query',
name: 'query',
type: 'string',
required: true,
default: '={{ $json.chatInput }}',
displayOptions: {
show: {
'@version': [1.2],
},
},
},
{
...promptTypeOptions,
displayOptions: {
hide: {
'@version': [{ _cnd: { lte: 1.2 } }],
},
},
},
{
...textFromPreviousNode,
displayOptions: { show: { promptType: ['auto'], '@version': [{ _cnd: { gte: 1.4 } }] } },
},
{
displayName: 'Text',
name: 'text',
type: 'string',
required: true,
default: '',
typeOptions: {
rows: 2,
},
displayOptions: {
show: {
promptType: ['define'],
},
},
},
{
displayName: 'Options',
name: 'options',
type: 'collection',
default: {},
placeholder: 'Add Option',
options: [
{
displayName: 'System Prompt Template',
name: 'systemPromptTemplate',
type: 'string',
default: SYSTEM_PROMPT_TEMPLATE,
description:
'Template string used for the system prompt. This should include the variable `{context}` for the provided context. For text completion models, you should also include the variable `{question}` for the users query.',
typeOptions: {
rows: 6,
},
},
],
},
],
};
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
this.logger.debug('Executing Retrieval QA Chain');
const model = (await this.getInputConnectionData(
NodeConnectionType.AiLanguageModel,
0,
)) as BaseLanguageModel;
const retriever = (await this.getInputConnectionData(
NodeConnectionType.AiRetriever,
0,
)) as BaseRetriever;
const items = this.getInputData();
const returnData: INodeExecutionData[] = [];
// Run for each item
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
try {
let query;
if (this.getNode().typeVersion <= 1.2) {
query = this.getNodeParameter('query', itemIndex) as string;
} else {
query = getPromptInputByType({
ctx: this,
i: itemIndex,
inputKey: 'text',
promptTypeKey: 'promptType',
});
}
if (query === undefined) {
throw new NodeOperationError(this.getNode(), 'The query parameter is empty.');
}
const options = this.getNodeParameter('options', itemIndex, {}) as {
systemPromptTemplate?: string;
};
const chainParameters = {} as {
prompt?: PromptTemplate | ChatPromptTemplate;
};
if (options.systemPromptTemplate !== undefined) {
if (isChatInstance(model)) {
const messages = [
SystemMessagePromptTemplate.fromTemplate(options.systemPromptTemplate),
HumanMessagePromptTemplate.fromTemplate('{question}'),
];
const chatPromptTemplate = ChatPromptTemplate.fromMessages(messages);
chainParameters.prompt = chatPromptTemplate;
} else {
const completionPromptTemplate = new PromptTemplate({
template: options.systemPromptTemplate,
inputVariables: ['context', 'question'],
});
chainParameters.prompt = completionPromptTemplate;
}
}
const chain = RetrievalQAChain.fromLLM(model, retriever, chainParameters);
const response = await chain.withConfig(getTracingConfig(this)).invoke({ query });
returnData.push({ json: { response } });
} catch (error) {
if (this.continueOnFail()) {
returnData.push({ json: { error: error.message }, pairedItem: { item: itemIndex } });
continue;
}
throw error;
}
}
return [returnData];
}
}