n8n/packages/@n8n/nodes-langchain/nodes/chains/ChainRetrievalQA/ChainRetrievalQa.node.ts
कारतोफ्फेलस्क्रिप्ट™ 2ce1644d01
refactor(core): Shovel around more of AI code (no-changelog) (#12218)
2024-12-16 13:46:19 +01:00

241 lines
6 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import type { BaseLanguageModel } from '@langchain/core/language_models/base';
import {
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
PromptTemplate,
} from '@langchain/core/prompts';
import type { BaseRetriever } from '@langchain/core/retrievers';
import { RetrievalQAChain } from 'langchain/chains';
import {
NodeConnectionType,
type IExecuteFunctions,
type INodeExecutionData,
type INodeType,
type INodeTypeDescription,
NodeOperationError,
} from 'n8n-workflow';
import { promptTypeOptions, textFromPreviousNode } from '@utils/descriptions';
import { getPromptInputByType, isChatInstance } from '@utils/helpers';
import { getTemplateNoticeField } from '@utils/sharedFields';
import { getTracingConfig } from '@utils/tracing';
const SYSTEM_PROMPT_TEMPLATE = `Use the following pieces of context to answer the users question.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
----------------
{context}`;
export class ChainRetrievalQa implements INodeType {
description: INodeTypeDescription = {
displayName: 'Question and Answer Chain',
name: 'chainRetrievalQa',
icon: 'fa:link',
group: ['transform'],
version: [1, 1.1, 1.2, 1.3, 1.4],
description: 'Answer questions about retrieved documents',
defaults: {
name: 'Question and Answer Chain',
color: '#909298',
},
codex: {
alias: ['LangChain'],
categories: ['AI'],
subcategories: {
AI: ['Chains', 'Root Nodes'],
},
resources: {
primaryDocumentation: [
{
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainretrievalqa/',
},
],
},
},
// eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node
inputs: [
NodeConnectionType.Main,
{
displayName: 'Model',
maxConnections: 1,
type: NodeConnectionType.AiLanguageModel,
required: true,
},
{
displayName: 'Retriever',
maxConnections: 1,
type: NodeConnectionType.AiRetriever,
required: true,
},
],
outputs: [NodeConnectionType.Main],
credentials: [],
properties: [
getTemplateNoticeField(1960),
{
displayName: 'Query',
name: 'query',
type: 'string',
required: true,
default: '={{ $json.input }}',
displayOptions: {
show: {
'@version': [1],
},
},
},
{
displayName: 'Query',
name: 'query',
type: 'string',
required: true,
default: '={{ $json.chat_input }}',
displayOptions: {
show: {
'@version': [1.1],
},
},
},
{
displayName: 'Query',
name: 'query',
type: 'string',
required: true,
default: '={{ $json.chatInput }}',
displayOptions: {
show: {
'@version': [1.2],
},
},
},
{
...promptTypeOptions,
displayOptions: {
hide: {
'@version': [{ _cnd: { lte: 1.2 } }],
},
},
},
{
...textFromPreviousNode,
displayOptions: { show: { promptType: ['auto'], '@version': [{ _cnd: { gte: 1.4 } }] } },
},
{
displayName: 'Text',
name: 'text',
type: 'string',
required: true,
default: '',
typeOptions: {
rows: 2,
},
displayOptions: {
show: {
promptType: ['define'],
},
},
},
{
displayName: 'Options',
name: 'options',
type: 'collection',
default: {},
placeholder: 'Add Option',
options: [
{
displayName: 'System Prompt Template',
name: 'systemPromptTemplate',
type: 'string',
default: SYSTEM_PROMPT_TEMPLATE,
description:
'Template string used for the system prompt. This should include the variable `{context}` for the provided context. For text completion models, you should also include the variable `{question}` for the users query.',
typeOptions: {
rows: 6,
},
},
],
},
],
};
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
this.logger.debug('Executing Retrieval QA Chain');
const model = (await this.getInputConnectionData(
NodeConnectionType.AiLanguageModel,
0,
)) as BaseLanguageModel;
const retriever = (await this.getInputConnectionData(
NodeConnectionType.AiRetriever,
0,
)) as BaseRetriever;
const items = this.getInputData();
const returnData: INodeExecutionData[] = [];
// Run for each item
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
try {
let query;
if (this.getNode().typeVersion <= 1.2) {
query = this.getNodeParameter('query', itemIndex) as string;
} else {
query = getPromptInputByType({
ctx: this,
i: itemIndex,
inputKey: 'text',
promptTypeKey: 'promptType',
});
}
if (query === undefined) {
throw new NodeOperationError(this.getNode(), 'The query parameter is empty.');
}
const options = this.getNodeParameter('options', itemIndex, {}) as {
systemPromptTemplate?: string;
};
const chainParameters = {} as {
prompt?: PromptTemplate | ChatPromptTemplate;
};
if (options.systemPromptTemplate !== undefined) {
if (isChatInstance(model)) {
const messages = [
SystemMessagePromptTemplate.fromTemplate(options.systemPromptTemplate),
HumanMessagePromptTemplate.fromTemplate('{question}'),
];
const chatPromptTemplate = ChatPromptTemplate.fromMessages(messages);
chainParameters.prompt = chatPromptTemplate;
} else {
const completionPromptTemplate = new PromptTemplate({
template: options.systemPromptTemplate,
inputVariables: ['context', 'question'],
});
chainParameters.prompt = completionPromptTemplate;
}
}
const chain = RetrievalQAChain.fromLLM(model, retriever, chainParameters);
const response = await chain.withConfig(getTracingConfig(this)).invoke({ query });
returnData.push({ json: { response } });
} catch (error) {
if (this.continueOnFail()) {
returnData.push({ json: { error: error.message }, pairedItem: { item: itemIndex } });
continue;
}
throw error;
}
}
return [returnData];
}
}