- fold metric name into labels
- return initialization errors back to main
- add snappy compression
- better context handling
- pre-allocation of labels
- remove generic naming
- other cleanups
This uses a new proto format, with scope for multiple samples per
timeseries in future. This will allow users to pump samples out to
whatever they like without having to change the core Prometheus code.
There's also an example receiver to save users figuring out the
boilerplate themselves.
Specifically, the TestSpawnNotMoreThanMaxConcurrentSendsGoroutines was failing on a fresh checkout of master.
The test had a race condition -- it would only pass if one of the
spawned goroutines happened to very quickly pull a set of samples off an
internal queue.
This patch rewrites the test so that it deterministically waits until
all samples have been pulled off that queue. In case of errors, it also
now reports on the difference between what it expected and what it found.
I verified that, if the code under test is deliberately broken, the test
successfully reports on that.
See discussion in
https://groups.google.com/forum/#!topic/prometheus-developers/bkuGbVlvQ9g
The main idea is that the user of a storage shouldn't have to deal with
fingerprints anymore, and should not need to do an individual preload
call for each metric. The storage interface needs to be made more
high-level to not expose these details.
This also makes it easier to reuse the same storage interface for remote
storages later, as fewer roundtrips are required and the fingerprint
concept doesn't work well across the network.
NOTE: this deliberately gets rid of a small optimization in the old
query Analyzer, where we dedupe instants and ranges for the same series.
This should have a minor impact, as most queries do not have multiple
selectors loading the same series (and at the same offset).
tl;dr: This is not a fundamental solution to the indexing problem
(like tindex is) but it at least avoids utilizing the intersection
problem to the greatest possible amount.
In more detail:
Imagine the following query:
nicely:aggregating:rule{job="foo",env="prod"}
While it uses a nicely aggregating recording rule (which might have a
very low cardinality), Prometheus still intersects the low number of
fingerprints for `{__name__="nicely:aggregating:rule"}` with the many
thousands of fingerprints matching `{job="foo"}` and with the millions
of fingerprints matching `{env="prod"}`. This totally innocuous query
is dead slow if the Prometheus server has a lot of time series with
the `{env="prod"}` label. Ironically, if you make the query more
complicated, it becomes blazingly fast:
nicely:aggregating:rule{job=~"foo",env=~"prod"}
Why so? Because Prometheus only intersects with non-Equal matchers if
there are no Equal matchers. That's good in this case because it
retrieves the few fingerprints for
`{__name__="nicely:aggregating:rule"}` and then starts right ahead to
retrieve the metric for those FPs and checking individually if they
match the other matchers.
This change is generalizing the idea of when to stop intersecting FPs
and go into "retrieve metrics and check them individually against
remaining matchers" mode:
- First, sort all matchers by "expected cardinality". Matchers
matching the empty string are always worst (and never used for
intersections). Equal matchers are in general consider best, but by
using some crude heuristics, we declare some better than others
(instance labels or anything that looks like a recording rule).
- Then go through the matchers until we hit a threshold of remaining
FPs in the intersection. This threshold is higher if we are already
in the non-Equal matcher area as intersection is even more expensive
here.
- Once the threshold has been reached (or we have run out of matchers
that do not match the empty string), start with "retrieve metrics
and check them individually against remaining matchers".
A beefy server at SoundCloud was spending 67% of its CPU time in index
lookups (fingerprintsForLabelPairs), serving mostly a dashboard that
is exclusively built with recording rules. With this change, it spends
only 35% in fingerprintsForLabelPairs. The CPU usage dropped from 26
cores to 18 cores. The median latency for query_range dropped from 14s
to 50ms(!). As expected, higher percentile latency didn't improve that
much because the new approach is _occasionally_ running into the worst
case while the old one was _systematically_ doing so. The 99th
percentile latency is now about as high as the median before (14s)
while it was almost twice as high before (26s).
If the chunks of a series in the checkpoint are all older then the
latest chunk on disk, the head chunk is persisted and therefore has to
be declared closed.
It would be great to have a test for this, but that would require more
plumbing, subject of #447.
PromQL only requires a much narrower interface than local.Storage in
order to run queries. Narrower interfaces are easier to replace and
test, too.
We could also change the web interface to use local.Querier, except that
we'll probably use appending functions from there in the future.
On Windows, it is not possible to rename or delete a file that is
currerntly open. This change closes the file in dropAndPersistChunks
before it tries to delete it, or rename the temporary file to it.
With a lot of series accessed in a short timeframe (by a query, a
large scrape, checkpointing, ...), there is actually quite a
significant amount of lock contention if something similar is running
at the same time.
In those cases, the number of locks needs to be increased.
On the same front, as our fingerprints don't have a lot of entropy, I
introduced some additional shuffling. With the current state, anly
changes in the least singificant bits of a FP would matter.
But only on DEBUG level.
Also, count and report the two cases of out-of-order timestamps on the
one hand and same timestamp but different value on the other hand
separately.
Before, we checkpointed after every newly detected fingerprint
collision, which is not a problem as long as collisions are
rare. However, with a sufficient number of metrics or particular
nature of the data set, there might be a lot of collisions, all to be
detected upon the first set of scrapes, and then the checkpointing
after each detection will take a quite long time (it's O(n²),
essentially).
Since we are rebuilding the fingerprint mapping during crash recovery,
the previous, very conservative approach didn't even buy us
anything. We only ever read from the checkpoint file after a clean
shutdown, so the only time we need to write the checkpoint file is
during a clean shutdown.
Prometheus is Apache 2 licensed, and most source files have the
appropriate copyright license header, but some were missing it without
apparent reason. Correct that by adding it.
The chunk encoding was hardcoded there because it mostly doesn't
matter what encoding is chosen in that test. Since type 1 is
battle-hardened enough, I'm switching to type 2 here so that we can
catch unexpected problems as a byproduct. My expectation is that the
chunk encoding doesn't matter anyway, as said, but then "unexpected
problems" contains the word "unexpected".
So far, the last sample in a chunk was saved twice. That's required
for adding more samples as we need to know the last sample added to
add more samples without iterating through the whole chunk. However,
once the last sample was added to the chunk before it's full, there is
no need to save it twice. Thus, the very last sample added to a chunk
can _only_ be saved in the header fields for the last sample. The
chunk has to be identifiable as closed, then. This information has
been added to the flags byte.
This improves fuzz testing in two ways:
(1) More realistic time stamps. So far, the most common case in
practice was very rare in the test: Completely regular increases of
the timestamp.
(2) Verify samples by scanning through the whole relevant section of
the series.
For Gorilla-like chunks, this showed two things:
(1) With more regularly increasing time stamps, BenchmarkFuzz is
essentially as fast as with the traditional chunks:
```
BenchmarkFuzzChunkType0-8 2 972514684 ns/op 83426196 B/op 2500044 allocs/op
BenchmarkFuzzChunkType1-8 2 971478001 ns/op 82874660 B/op 2512364 allocs/op
BenchmarkFuzzChunkType2-8 2 999339453 ns/op 76670636 B/op 2366116 allocs/op
```
(2) There was a bug related to when and how the chunk footer is
overwritten to make use for the last sample. This wasn't exposed by
random access as the last sample of a chunk is retrieved from the
values in the header in that case.
This is not a verbatim implementation of the Gorilla encoding. First
of all, it could not, even if we wanted, because Prometheus has a
different chunking model (constant size, not constant time). Second,
this adds a number of changes that improve the encoding in general or
at least for the specific use case of Prometheus (and are partially
only possible in the context of Prometheus). See comments in the code
for details.
It is now also used in label matching, so the name of the metric
changed from `prometheus_local_storage_invalid_preload_requests_total`
to `non_existent_series_matches_total'.
Only return an error where callers are doing something with it except
simply logging and ignoring.
All the errors touched in this commit flag the storage as dirty
anyway, and that fact is logged anyway. So most of what is being
removed here is just log spam.
As discussed earlier, the class of errors that flags the storage as
dirty signals fundamental corruption, no even bubbling up a one-time
warning to the user (e.g. about incomplete results) isn't helping much
because _anything_ happening in the storage has to be doubted from
that point on (and in fact retroactively into the past, too). Flagging
the storage dirty, and alerting on it (plus marking the state in the
web UI) is the only way I can see right now.
As a byproduct, I cleaned up the setDirty method a bit and improved
the logged errors.