* Fix `kuma_sd` targetgroup reporting (#9157) * Bundle all xDS targets into a single group Signed-off-by: austin ce <austin.cawley@gmail.com> * Snapshot in-memory chunks on shutdown for faster restarts (#7229) Signed-off-by: Ganesh Vernekar <ganeshvern@gmail.com> * Rename links Signed-off-by: Levi Harrison <git@leviharrison.dev> * Remove Individual Data Type Caps in Per-shard Buffering for Remote Write (#8921) * Moved everything to nPending buffer Signed-off-by: Levi Harrison <git@leviharrison.dev> * Simplify exemplar capacity addition Signed-off-by: Levi Harrison <git@leviharrison.dev> * Added pre-allocation Signed-off-by: Levi Harrison <git@leviharrison.dev> * Don't allocate if not sending exemplars Signed-off-by: Levi Harrison <git@leviharrison.dev> * Avoid deadlock when processing duplicate series record (#9170) * Avoid deadlock when processing duplicate series record `processWALSamples()` needs to be able to send on its output channel before it can read the input channel, so reads to allow this in case the output channel is full. Signed-off-by: Bryan Boreham <bjboreham@gmail.com> * processWALSamples: update comment Previous text seems to relate to an earlier implementation. Signed-off-by: Bryan Boreham <bjboreham@gmail.com> * Optimise WAL loading by removing extra map and caching min-time (#9160) * BenchmarkLoadWAL: close WAL after use So that goroutines are stopped and resources released Signed-off-by: Bryan Boreham <bjboreham@gmail.com> * BenchmarkLoadWAL: make series IDs co-prime with #workers Series are distributed across workers by taking the modulus of the ID with the number of workers, so multiples of 100 are a poor choice. Signed-off-by: Bryan Boreham <bjboreham@gmail.com> * BenchmarkLoadWAL: simulate mmapped chunks Real Prometheus cuts chunks every 120 samples, then skips those samples when re-reading the WAL. Simulate this by creating a single mapped chunk for each series, since the max time is all the reader looks at. Signed-off-by: Bryan Boreham <bjboreham@gmail.com> * Fix comment Signed-off-by: Bryan Boreham <bjboreham@gmail.com> * Remove series map from processWALSamples() The locks that is commented to reduce contention in are now sharded 32,000 ways, so won't be contended. Removing the map saves memory and goes just as fast. Signed-off-by: Bryan Boreham <bjboreham@gmail.com> * loadWAL: Cache the last mmapped chunk time So we can skip calling append() for samples it will reject. Signed-off-by: Bryan Boreham <bjboreham@gmail.com> * Improvements from code review Signed-off-by: Bryan Boreham <bjboreham@gmail.com> * Full stops and capitals on comments Signed-off-by: Bryan Boreham <bjboreham@gmail.com> * Cache max time in both places mmappedChunks is updated Including refactor to extract function `setMMappedChunks`, to reduce code duplication. Signed-off-by: Bryan Boreham <bjboreham@gmail.com> * Update head min/max time when mmapped chunks added This ensures we have the correct values if no WAL samples are added for that series. Note that `mSeries.maxTime()` was always `math.MinInt64` before, since that function doesn't consider mmapped chunks. Signed-off-by: Bryan Boreham <bjboreham@gmail.com> * Split Go and React Tests (#8897) * Added go-ci and react-ci Co-authored-by: Julien Pivotto <roidelapluie@inuits.eu> Signed-off-by: Levi Harrison <git@leviharrison.dev> * Remove search keymap from new expression editor (#9184) Signed-off-by: Julius Volz <julius.volz@gmail.com> Co-authored-by: Austin Cawley-Edwards <austin.cawley@gmail.com> Co-authored-by: Levi Harrison <git@leviharrison.dev> Co-authored-by: Julien Pivotto <roidelapluie@inuits.eu> Co-authored-by: Bryan Boreham <bjboreham@gmail.com> Co-authored-by: Julius Volz <julius.volz@gmail.com>
12 KiB
title | nav_title | sort_rank |
---|---|---|
Querying basics | Basics | 1 |
Querying Prometheus
Prometheus provides a functional query language called PromQL (Prometheus Query Language) that lets the user select and aggregate time series data in real time. The result of an expression can either be shown as a graph, viewed as tabular data in Prometheus's expression browser, or consumed by external systems via the HTTP API.
Examples
This document is meant as a reference. For learning, it might be easier to start with a couple of examples.
Expression language data types
In Prometheus's expression language, an expression or sub-expression can evaluate to one of four types:
- Instant vector - a set of time series containing a single sample for each time series, all sharing the same timestamp
- Range vector - a set of time series containing a range of data points over time for each time series
- Scalar - a simple numeric floating point value
- String - a simple string value; currently unused
Depending on the use-case (e.g. when graphing vs. displaying the output of an expression), only some of these types are legal as the result from a user-specified expression. For example, an expression that returns an instant vector is the only type that can be directly graphed.
Literals
String literals
Strings may be specified as literals in single quotes, double quotes or backticks.
PromQL follows the same escaping rules as
Go. In single or double quotes a
backslash begins an escape sequence, which may be followed by a
, b
, f
,
n
, r
, t
, v
or \
. Specific characters can be provided using octal
(\nnn
) or hexadecimal (\xnn
, \unnnn
and \Unnnnnnnn
).
No escaping is processed inside backticks. Unlike Go, Prometheus does not discard newlines inside backticks.
Example:
"this is a string"
'these are unescaped: \n \\ \t'
`these are not unescaped: \n ' " \t`
Float literals
Scalar float values can be written as literal integer or floating-point numbers in the format (whitespace only included for better readability):
[-+]?(
[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?
| 0[xX][0-9a-fA-F]+
| [nN][aA][nN]
| [iI][nN][fF]
)
Examples:
23
-2.43
3.4e-9
0x8f
-Inf
NaN
Time series Selectors
Instant vector selectors
Instant vector selectors allow the selection of a set of time series and a single sample value for each at a given timestamp (instant): in the simplest form, only a metric name is specified. This results in an instant vector containing elements for all time series that have this metric name.
This example selects all time series that have the http_requests_total
metric
name:
http_requests_total
It is possible to filter these time series further by appending a comma separated list of label
matchers in curly braces ({}
).
This example selects only those time series with the http_requests_total
metric name that also have the job
label set to prometheus
and their
group
label set to canary
:
http_requests_total{job="prometheus",group="canary"}
It is also possible to negatively match a label value, or to match label values against regular expressions. The following label matching operators exist:
=
: Select labels that are exactly equal to the provided string.!=
: Select labels that are not equal to the provided string.=~
: Select labels that regex-match the provided string.!~
: Select labels that do not regex-match the provided string.
For example, this selects all http_requests_total
time series for staging
,
testing
, and development
environments and HTTP methods other than GET
.
http_requests_total{environment=~"staging|testing|development",method!="GET"}
Label matchers that match empty label values also select all time series that do not have the specific label set at all. Regex-matches are fully anchored. It is possible to have multiple matchers for the same label name.
Vector selectors must either specify a name or at least one label matcher that does not match the empty string. The following expression is illegal:
{job=~".*"} # Bad!
In contrast, these expressions are valid as they both have a selector that does not match empty label values.
{job=~".+"} # Good!
{job=~".*",method="get"} # Good!
Label matchers can also be applied to metric names by matching against the internal
__name__
label. For example, the expression http_requests_total
is equivalent to
{__name__="http_requests_total"}
. Matchers other than =
(!=
, =~
, !~
) may also be used.
The following expression selects all metrics that have a name starting with job:
:
{__name__=~"job:.*"}
The metric name must not be one of the keywords bool
, on
, ignoring
, group_left
and group_right
. The following expression is illegal:
on{} # Bad!
A workaround for this restriction is to use the __name__
label:
{__name__="on"} # Good!
All regular expressions in Prometheus use RE2 syntax.
Range Vector Selectors
Range vector literals work like instant vector literals, except that they
select a range of samples back from the current instant. Syntactically, a time
duration is appended in square brackets ([]
) at the end of a
vector selector to specify how far back in time values should be fetched for
each resulting range vector element.
In this example, we select all the values we have recorded within the last 5
minutes for all time series that have the metric name http_requests_total
and
a job
label set to prometheus
:
http_requests_total{job="prometheus"}[5m]
Time Durations
Time durations are specified as a number, followed immediately by one of the following units:
ms
- millisecondss
- secondsm
- minutesh
- hoursd
- days - assuming a day has always 24hw
- weeks - assuming a week has always 7dy
- years - assuming a year has always 365d
Time durations can be combined, by concatenation. Units must be ordered from the longest to the shortest. A given unit must only appear once in a time duration.
Here are some examples of valid time durations:
5h
1h30m
5m
10s
Offset modifier
The offset
modifier allows changing the time offset for individual
instant and range vectors in a query.
For example, the following expression returns the value of
http_requests_total
5 minutes in the past relative to the current
query evaluation time:
http_requests_total offset 5m
Note that the offset
modifier always needs to follow the selector
immediately, i.e. the following would be correct:
sum(http_requests_total{method="GET"} offset 5m) // GOOD.
While the following would be incorrect:
sum(http_requests_total{method="GET"}) offset 5m // INVALID.
The same works for range vectors. This returns the 5-minute rate that
http_requests_total
had a week ago:
rate(http_requests_total[5m] offset 1w)
For comparisons with temporal shifts forward in time, a negative offset can be specified:
rate(http_requests_total[5m] offset -1w)
This feature is enabled by setting --enable-feature=promql-negative-offset
flag. See feature flags for more details about
this flag.
@ modifier
The @
modifier allows changing the evaluation time for individual instant
and range vectors in a query. The time supplied to the @
modifier
is a unix timestamp and described with a float literal.
For example, the following expression returns the value of
http_requests_total
at 2021-01-04T07:40:00+00:00
:
http_requests_total @ 1609746000
Note that the @
modifier always needs to follow the selector
immediately, i.e. the following would be correct:
sum(http_requests_total{method="GET"} @ 1609746000) // GOOD.
While the following would be incorrect:
sum(http_requests_total{method="GET"}) @ 1609746000 // INVALID.
The same works for range vectors. This returns the 5-minute rate that
http_requests_total
had at 2021-01-04T07:40:00+00:00
:
rate(http_requests_total[5m] @ 1609746000)
The @
modifier supports all representation of float literals described
above within the limits of int64
. It can also be used along
with the offset
modifier where the offset is applied relative to the @
modifier time irrespective of which modifier is written first.
These 2 queries will produce the same result.
# offset after @
http_requests_total @ 1609746000 offset 5m
# offset before @
http_requests_total offset 5m @ 1609746000
This modifier is disabled by default since it breaks the invariant that PromQL
does not look ahead of the evaluation time for samples. It can be enabled by setting
--enable-feature=promql-at-modifier
flag. See feature flags for more details about this flag.
Additionally, start()
and end()
can also be used as values for the @
modifier as special values.
For a range query, they resolve to the start and end of the range query respectively and remain the same for all steps.
For an instant query, start()
and end()
both resolve to the evaluation time.
http_requests_total @ start()
rate(http_requests_total[5m] @ end())
Subquery
Subquery allows you to run an instant query for a given range and resolution. The result of a subquery is a range vector.
Syntax: <instant_query> '[' <range> ':' [<resolution>] ']' [ @ <float_literal> ] [ offset <duration> ]
<resolution>
is optional. Default is the global evaluation interval.
Operators
Prometheus supports many binary and aggregation operators. These are described in detail in the expression language operators page.
Functions
Prometheus supports several functions to operate on data. These are described in detail in the expression language functions page.
Comments
PromQL supports line comments that start with #
. Example:
# This is a comment
Gotchas
Staleness
When queries are run, timestamps at which to sample data are selected
independently of the actual present time series data. This is mainly to support
cases like aggregation (sum
, avg
, and so on), where multiple aggregated
time series do not exactly align in time. Because of their independence,
Prometheus needs to assign a value at those timestamps for each relevant time
series. It does so by simply taking the newest sample before this timestamp.
If a target scrape or rule evaluation no longer returns a sample for a time series that was previously present, that time series will be marked as stale. If a target is removed, its previously returned time series will be marked as stale soon afterwards.
If a query is evaluated at a sampling timestamp after a time series is marked stale, then no value is returned for that time series. If new samples are subsequently ingested for that time series, they will be returned as normal.
If no sample is found (by default) 5 minutes before a sampling timestamp, no value is returned for that time series at this point in time. This effectively means that time series "disappear" from graphs at times where their latest collected sample is older than 5 minutes or after they are marked stale.
Staleness will not be marked for time series that have timestamps included in their scrapes. Only the 5 minute threshold will be applied in that case.
Avoiding slow queries and overloads
If a query needs to operate on a very large amount of data, graphing it might time out or overload the server or browser. Thus, when constructing queries over unknown data, always start building the query in the tabular view of Prometheus's expression browser until the result set seems reasonable (hundreds, not thousands, of time series at most). Only when you have filtered or aggregated your data sufficiently, switch to graph mode. If the expression still takes too long to graph ad-hoc, pre-record it via a recording rule.
This is especially relevant for Prometheus's query language, where a bare
metric name selector like api_http_requests_total
could expand to thousands
of time series with different labels. Also keep in mind that expressions which
aggregate over many time series will generate load on the server even if the
output is only a small number of time series. This is similar to how it would
be slow to sum all values of a column in a relational database, even if the
output value is only a single number.